

May 3, 2005 SAND2004-6083J

REVISED MANUSCRIPT

1

Calibration, Validation, and Sensitivity Analysis:
What’s What

T. G. Trucano and L. P. Swiler

Optimization and Uncertainty Estimation Department, Sandia National Laboratories,
P. O. Box 5800, Albuquerque, New Mexico 87185-0819, United States

E-mail: tgtruca@sandia.gov , lpswile@sandia.gov

T. Igusa

Johns Hopkins University, Baltimore, Maryland 21218
E-mail: tigusa@jhu.edu

W. L. Oberkampf and M. Pilch

Validation and Uncertainty Estimation Processes, Sandia National Laboratories,
P. O. Box 5800, Albuquerque, New Mexico 87185-0819, United States

E-mail: wloberk@sandia.gov, mpilch@sandia.gov

(Submitted to the journal Reliability Engineering and System Safety)

Abstract: One very simple interpretation of calibration is to adjust a set of parameters

associated with a computational science and engineering code so that the model agreement is

maximized with respect to a set of experimental data. One very simple interpretation of

validation is to quantify our belief in the predictive capability of a computational code

through comparison with a set of experimental data. Uncertainty in both the data and the code

are important and must be mathematically understood to correctly perform both calibration

and validation. Sensitivity analysis, being an important methodology in uncertainty analysis,

is thus important to both calibration and validation. In this paper, we intend to clarify the

language just used and express some opinions on the associated issues. We will endeavor to

identify some technical challenges that must be resolved for successful validation of a

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

2

predictive modeling capability. One of these challenges is a formal description of a “model

discrepancy” term. Another challenge revolves around the general adaptation of abstract

learning theory as a formalism that potentially encompasses both calibration and validation in

the face of model uncertainty.

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

3

1. INTRODUCTION

Our primary goal for this paper is to explore and differentiate the principles of calibration

and validation for computational science and engineering (CS&E), as well as to present some

related technical issues that are important and of current interest to us. Our conclusion is that

calibration and validation are essentially different. To explain what we mean by calibration

and validation, we restrict our attention to CS&E software systems, called codes here. We

then define the product (output) of the execution of a code for a given choice of input to be

the resulting calculation. Now, one definition of calibration is to adjust a set of code input

parameters associated with one or more calculations so that the resulting agreement of the

code calculations with a chosen and fixed set of experimental data is maximized (this requires

a quantitative specification of the agreement). Compare this with the following simple

definition of validation: that is, to quantify our confidence in the predictive capability of a

code for a given application through comparison of calculations with a set of experimental

data.

The foundation of our discussion below elaborates the meaning of these definitions of

validation and calibration, primarily through the introduction of some mathematical

formalism. Our formalism allows us to reasonably precisely argue that CS&E validation and

calibration require rigorous comparison with benchmarks, which we precisely define in

Section 2. Our discussion leads us to consider other concepts as well, including uncertainty,

prediction, and verification, and their relationship to validation and calibration. Verification

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

4

is a particularly important concept in CS&E and inevitably influences calibration and

validation. We will explain why this is the case, and claim as well that validation and

calibration in CS&E both depend on results of verification. We also claim that calibration is

logically dependent on the results of validation, which is one way of emphasizing that

calibration cannot be viewed as an adequate substitute for validation in many CS&E

applications.

Uncertainty quantification, and therefore sensitivity analysis, is a critical challenge in both

validation and calibration. A lot has already been written on this topic in the computational

literature and so we mainly discuss three highly speculative issues that are atypical of

previously published themes. First, we discuss a formalization of the concept of code

credibility that results from the use of benchmarks in verification and validation. Credibility is

intended to be an important consequence of verification and validation; and calibration for

that matter. We raise, but do not answer, the question of how credibility might be quantified.

However such quantification may be achieved, it will have uncertainty associated with it.

Second, we discuss a specific area of overlap between validation and calibration that is

centered on how to deal with uncertainty in the physical models implemented in a CS&E

code. This is the topic of calibration under uncertainty. Our primary conclusion is that recent

calibration research that mathematically confronts the presence of this model-form

uncertainty in statistical calibration procedures is important and coupled to validation issues.

We speculate on the nature of this coupling, in particular that validation provides important

information to calibration accounting for model-form uncertainty. We further argue that a full

exploration of this issue might lead to the investigation of abstract learning theory as a

quantitative tool in validation and calibration research. Finally, we speculate that uncertainty

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

5

quantification has a role in verification. The use of uncertainty quantification in verification is

probably not controversial, for example in statistical testing procedures, but our belief that the

results of verification studies have uncertainty that requires quantification is. We explain this

issue, but do not attempt to resolve it in this paper.

It is perhaps unclear why we are presenting an entire paper that mainly speaks to the issue

of separation of calibration and validation. After all, isn’t the overarching goal of

computational science to improve the associated calculations for given applications?

Therefore, isn’t it natural to perform calibration to achieve this purpose? We believe that it is

dangerous to replace validation with calibration, and that validation provides information that

is necessary to understand the ultimate limitations of calibration. This is especially true in

certain cases for which high-consequence CS&E prediction is required. These cases represent

significant challenges for the use of CS&E codes and inevitably increase the importance of

precisely distinguishing between validation and calibration in support of these uses. Our

approach in this paper to calibration and validation emphasizes a kind of logical ideal. We do

not emphasize practical issues, but the interested reader can find practicalities discussed in

many of our references. We do emphasize that “real validation” and “real calibration” can be

argued to be somewhat removed from the formalism and logical separation we stress in this

paper. Murky separation of validation and calibration in real CSE problems highlights the

need to have some kind of logical foundation for clearly understanding the interplay of these

concepts, especially for high-consequence applications of CSE.

Section 2 presents a discussion of definitions of the various concepts mentioned above.

Section 2.2 provides an illustration of the key ideas of verification, validation, and calibration

using a computational fluid dynamics example (virtually the only CSE example in the paper).

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

6

Formalism of the concepts is introduced in Section 2.3, including of the concept of a

benchmark and its comparison with calculations through comparison functions, and a notional

formalism for credibility. In Section 3, we review common ideas of calibration (Sections 3.1

and 3.2), introduce some current research themes that generalize these ideas when considering

uncertainty in the models that must be calibrated (Section 3.3), and introduce the possibility

that computational learning theory might have some interest to our problems (Section 3.4).

Section 4 briefly touches upon the role of sensitivity analysis in our discussion. We primarily

provide some references, discuss the early appearance of sensitivity analysis in validation, and

briefly comment on the presence of sensitivity analysis in credibility measures. Section 5

concludes the paper. We have tried to provide a useful set of references.

 We emphasize that this paper presents some research ideas that are in early stages and

somewhat speculative, but that we feel offer promising potential paths forward in calibration

and validation. We introduce enough formalism to add some precision to our presentation, but

this formalism does not reduce the amount of speculation in our discussion. Nor is the

formalism enlisted to, in some sense, solve a particular problem in this paper. We hope that

future papers will perform this role.

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

7

2. CALIBRATION AND VALIDATION

2.1. Guiding Definitions

In this paper our underlying emphasis is on computational science and engineering (CSE)

supported by the U. S. Department of Energy’s Advanced Simulation and Computing

program (ASC, formerly called ASCI). A description of this program is given in [1]. The CSE

software developed under the ASC program is centered on the large-scale parallel numerical

solution of systems of nonlinear partial differential equations of great complexity. The

software implementations that accomplish this are called computer codes, or simply codes

(see below).

Within this context, the current formal definitions of verification and validation (V&V)

used by the ASC program are as follows:

Verification (ASC) is the process of confirming that a computer code correctly

implements the algorithms that were intended.

Validation (ASC) is the process of confirming that the predictions of a code

adequately represent measured physical phenomena.

These definitions have a heritage that reaches back to definitions of V&V originally

formalized by the Defense Modeling and Simulation Office (DMSO) of the United States

Department of Defense (DoD) [2-3]. From the perspective of the computational engineering

and physics communities, the definition of verification by the DoD does not make it clear that

the accuracy of the numerical solution to partial differential equations (PDEs) should be

included in the definition. To clarify this issue, the Computational Fluid Dynamics Committee

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

8

on Standards of the American Institute of Aeronautics and Astronautics (AIAA) proposed a

slight modification to the DoD definition [4]:

Verification (AIAA) is the process of determining that a model implementation

accurately represents the developer's conceptual description of the model and the

solution to the model.

Validation (AIAA) is the process of determining the degree to which a model is an

accurate representation of the real world from the perspective of the intended uses of

the model.

While the AIAA definitions of V&V are more general than the current ASC definitions,

we believe the ASC definitions to be compatible with the AIAA definitions. Calibration is not

defined by ASC in [1]. We will give a definition of this term below, but we find it convenient

to present this definition after we have defined the term benchmark.

We are only concerned with computational solutions of systems of partial differential

equations, but of course V&V is of interest for a much broader class of simulation

applications, such as discrete-event simulations and agent-based simulations. Partial

differential equation solutions, generated by finite difference, finite element, spectral, or other

numerical methods, follow the process of (1) writing down partial differential equations and

required initial and boundary conditions; (2) developing mathematical algorithms for the

numerical solution of these partial differential equations; (3) implementing these algorithms in

a body of software; (4) execution of the code on computers and (5) analysis of the results.

A code is the body of software that implements the solution algorithms in step (3) above.

This is the meaning of the word “code” in the ASC definitions of V&V above. Such codes are

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

9

typically designed to be general purpose, for example computational fluid dynamics codes.

This means that there is great flexibility in the specification of initial and boundary

conditions, and in the numerical solution details (in particular discretization) of the numerical

solution.

A calculation is a fixed choice of the input of a code, that is of the initial and boundary

conditions, all physics modeling specification parameters, and all numerical parameters for a

particular code that produce computational results, and the resulting output of the execution of

the code with this choice of input. One could include within the components of a calculation

other factors that influence the execution of the code as well, such as the computing hardware

the calculation was performed on and the choice of post-processing software used to analyze

the results of the calculation. We will not concern ourselves with these additional factors.

A computational science and engineering prediction is simply a calculation that predicts a

number or quantity or a collection of these quantities prior to or in lieu of their physical

measurement. We have chosen the definition of prediction to be anticipation of measurements

because that is the main emphasis for prediction in CS&E. With a computational prediction

we are making a statement about physical phenomena without recourse to experimental

observation of the specific phenomena first. Examples of such predictions include:

- Simulate an experiment without knowledge of its results or prior to its execution.

- Make scientific pronouncements about phenomena that cannot currently be studied

experimentally.

- Use computation to extrapolate existing understanding into experimentally unexplored

regimes.

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

10

We wish to distinguish our particular concerns here from the conventional notion of

scientific exploration (where prediction may be wrong but still useful). We are interested in

confident prediction using computation. In computational science, of course, to some degree

confidence is correlated with belief in the quantitative numerical, mathematical and physical

accuracy of a calculated prediction. Intuitively, confident prediction then implies having some

level of confidence or belief in the quantitative accuracy of the prediction. This further

implies a willingness to use the prediction in some meaningful way, for example in a decision

process.

By introducing the expectation of accuracy in prediction as a foundation for confidence

into this discussion we have therefore introduced the requirement for one or more

measurement principles that we can use to quantify this accuracy. A benchmark is a choice of

information that is believed to be accurate or true for use in verification, validation or

calibration (defined below), one or more methods of comparing this information with

computational results, and logical procedures for drawing conclusions from these

comparisons. The analytic mathematical solution of a test problem would be true for use as a

verification benchmark. In validation, accuracy of an experimental benchmark could be

interpreted as small (enough) experimental error bars. Here we emphasize that the application

of benchmarks performed in verification and validation is the primary basis for establishing

our confidence that a prediction is accurate and useful. Clearly the choice of benchmark

cannot be decoupled from the intended purpose of the benchmark. In the remainder of the

paper we will sometimes use the word benchmark primarily in reference to the information

defined by the benchmark, with the method(s) of comparison with calculations and drawing

conclusions only implicit.

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

11

In principle, the accuracy assessment underlying confidence in a computational prediction can

be performed through verification and validation either before or after the creation of the

prediction. As we will argue in greater detail in Section 2, we believe that verification and

validation should logically occur prior to the creation of a prediction. Computational

prediction defined as performing calculations and reporting results does not require prior

benchmarking, there is little or no confidence in the resulting prediction and this is not good

practice. For example, a computational prediction regarding an upcoming experiment can be

made with no attention to the problem of computational accuracy at all. Once the experiment

is performed, merely comparing the experiment with the calculation does not create a

benchmark. It is an independent thought process to decide what role the now-performed

experiment might have as a benchmark, and revolves around questions about the relevancy

and accuracy of the experiment.

Our confidence in the process of accurate prediction does require benchmarks. In

particular, our judgment of the accuracy of a given prediction depends on our quantitative

understanding of past computational performance of the code for other problems. Our concept

of benchmark here is designed to capture the core of this past experience. In essentially all

circumstances of practice in CS&E with complex codes, our current belief in the accuracy of

a real prediction rests on a complex set of existing knowledge. Our concept of benchmark can

be viewed as a concentration point of this knowledge. Examples of benchmarks include

analytic test problems or the experimental information used in previous experimental-

computational comparisons with the same code. Subjective expert opinion may also be

deemed to be a benchmark. For example, this is often the basis for declaring one code to be a

benchmark in a code-comparison activity [5].

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

12

Benchmarks are especially helpful for us in more completely quantifying our

understanding of verification, validation and calibration. We quoted the ASC definitions of

V&V above. A more technical discussion of the definitions of V&V is given by Oberkampf

and Trucano [6]; see also Roache [7] for an alternative discussion. These references imply

that there are myriad technical meanings associated with these terms, especially depending on

the technical community that is engaged in the discussion. From a broader perspective, there

is even debate as to whether a term like validation can be sensible when applied to

computational models [8]. This debate tends to center on definitions of validation that imply

some philosophical absolutes such as “correctness of physics.” At its core in such a

discussion, model validation means establishing that a model (or code) is true. When stated in

this way, it is easy to dispute whether this is possible or not [9] although some [7] view this

line of argument as outrageously irrelevant.

The concept of benchmarks helps us clarify the content of V&V and formalize the essence

of the tasks that are performed in pragmatic circumstances. Let us first consider verification.

From the software engineering perspective, the ASC definition of verification is compatible

with the process of determining that requirements are correctly implemented in a code. For

CS&E, Roache has stated that this effectively means that the equations implemented in the

code are correctly numerically solved for the intended application. This is an important way

of viewing the problem of verification because it emphasizes that verification is primarily a

mathematical problem, as long as the issues specific to software implementation are

acknowledged. We also have some expectation of generalization of the findings of

verification tasks. If the equations are accurately numerically solved in one case, this is likely

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

13

true for a broader set of cases given the mathematical nature of this problem. How broad this

larger set of cases can be is an important question in particular subject matter applications.

The problem of verification in CS&E codes boils down to the following actions. Given a

set of equations, (1) are the chosen solution algorithms mathematically correct?; (2) is the

software implementing these algorithms correct?; (3) do particular choices of code input

parameters yield accurate calculations when executed? This latter question emphasizes that a

perfect code implementation of a perfect solution algorithm can yield an inaccurate

calculation because of poor code input specifications, including an inadequately (for needed

accuracy) defined computational mesh. This is not a trivial objection. For years, many

important computational predictions have not been performed as accurately as needed because

of restrictions on the characteristics of the computational mesh due to computing hardware

limitations. There is no end in sight to this particular problem.

Benchmarks play an important role in performing verification, especially in assessing the

answers to questions (1) and (2) above, because these questions cannot be completely

answered by rigorous mathematical theorems in complex calculations. Oberkampf, Trucano,

and Hirsch [6,10] discuss this issue in detail. The use of benchmarks in verification is called

testing and has a major software engineering literature associated with it [11,12]. From our

point of view, benchmarks also provide major input into the assessment of question (3), in the

sense of aggregating and systematically integrating past accuracy experience to judge the

computational accuracy of a current prediction. As noted by Oberkampf and Trucano [6],

question (3) in principle can be answered well enough through a posteriori error estimation,

when and if that technology achieves a sufficient level of rigor and generality to apply to the

predictions CS&E must make in the future. While some believe that a posteriori error

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

14

estimation already is sufficiently capable of addressing (3) for complex problems, we

disagree. The other mathematical alternative of empirical convergence studies, even if it can

be performed, ultimately has limited mathematical rigor associated with it. The use of

benchmarks therefore remains a critical contributor to the resolution of question (3) in

complex calculations. More generally, while we can honestly characterize verification as a

mathematical problem, it is highly unlikely that it will be fully addressed for realistic CS&E

codes by convincing mathematical demonstrations. Instead, the variety of information

available at any given time for attacking verification must include benchmarks and an

understanding of their impact.

Validation deals with the question of whether the implemented equations in a code are

correct for an intended application of the code. Again, from the software engineering

perspective, the ASC definition of validation is the process of determining whether the

requirements implemented in the code are correct for intended applications. For CS&E

“correct requirements” means correct science and engineering. Thus, as Roache has

emphasized, validation is a problem of physics, engineering, chemistry, and so on, not of

mathematics. To avoid the philosophical debate hinted at above for validation, it is convenient

for us to emphasize that in CS&E, validation is the process of quantifying the physical fidelity

and credibility of a code for particular predictive applications through the comparison with

defined sets of physical benchmarks. These benchmarks define what we will call the

validation domain [13]. We assume in this paper that validation benchmarks are always

experimental, for example as defined through dedicated experimental validation experiments.

Predictive application of the code must therefore be interpreted as an interpolation or

extrapolation beyond the validation domain.

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

15

Calibration is the process of improving the agreement of a code calculation or set of code

calculations with respect to a chosen set of benchmarks through the adjustment of parameters

implemented in the code. We emphasize that calibration and validation can differ simply

through the choice of benchmarks. A benchmark set can be chosen specifically to facilitate

the act of calibration and need not be relevant to validation, or verification for that matter.

Clearly, the specific way benchmarks are selected and used to perform calibration is a

technical and methodological issue, of which we will have more to say below. We expect this

process to be highly subject matter dependent. In Section 2.3 we introduce formalism that

allows us to explain more precisely the role of code input parameters in this discussion.

2.2. An Illustration

Chen and Trucano [14] document a planar, inviscid two-dimensional validation study of

strong shock reflection, where simulation was performed by the ALEGRA code solving the

compressible Euler equations. The problem of interest is illustrated in Figure 1, where the

geometry of a typical calculation and a color representation of the computed two-dimensional

density field at a given time are shown. The physical problem is that of an incident shock

wave of given Mach number obliquely reflecting from a metallic wedge. In Figure 1, the

direction of the incident shock wave is given by the block arrow; the direction of the reflected

shock wave is parallel to the wedge boundary, depicted by the second arrow. A double Mach

reflection simulation is shown in this figure. The shock reflection process transforms from

regular reflection to single Mach or double Mach reflection dependent upon wedge angle θ

and the incident shock Mach number. The details are unimportant for our discussion and can

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

16

be found in Chen and Trucano. Information about the ALEGRA shock wave physics code can

also be found in that reference.

Verification and validation can be illustrated in terms of these kinds of calculations.

Figure 2 demonstrates numerical accuracy concerns associated with verification by overlaying

three separate resolution calculations reported in Chen and Trucano of the computed pressure

as a function of distance parallel to the boundary of the wedge for conditions where double

Mach reflection was observed experimentally. Clear differences are seen in these three

calculations, most notably that a structure identifiable with double Mach reflection (two

distinct shock waves) only begins to appear at the finest reported resolution. A posteriori error

estimation techniques are not available in this study.

Our ability to draw conclusions from experimental data that may be compared with

calculations like that in Figure 1 is dependent upon the numerical quality of the calculations

and the resolution at which experimental results are recorded. Verification assesses the

numerical quality of the calculations, and has two components – calculation verification and

code verification [7]. Figure 2 is one means of studying numerical quality. The questions that

should be asked, and that are simply implicit in Figure 2, are many. Under calculation

verification we may ask: What is the numerical error of a given calculation for a specified

mesh and choice of input? How does this error depend on the mesh and computational

parameters, such as numerical viscosities required for shock fitting in this case? More

specifically, are calculations converged? That is, is the computed error below a specified

tolerance? Under code verification, we might ask whether calculations that are believed to be

converged, as confirmed perhaps through a careful grid convergence study, are in fact

converged to the mathematically correct solution. This latter point is a question about the

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

17

correctness of the solution algorithms and their software implementation. Therefore, its

answer also requires rigorous appraisal of the absence of software bugs. This problem is made

difficult and important by the fact that CS&E codes that compile and run and even produce

results similar qualitatively to those in Figures 1 and 2 may still have software bugs that

destroy the credibility of the results.

The concept of validation is illustrated in Figure 3, where experimental pressure data are

compared with ALEGRA simulations. This figure is a variation of a figure first published by

Sandoval [15], and overlays experimental normalized pressure data and specific ALEGRA

calculations described by Chen and Trucano as a function of wedge shock angle. The vertical

axis in this figure is defined by the normalized pressure ratio:

 r

inc

p
p
∆

≡
∆

Reflected Pressure - Ambient Pressure
Incident Pressure - Ambient Pressure

Experimental data in the figure show the transition from regular reflection (RR) to double

Mach reflection (DMR) near a wedge angle of 50 degrees. The experimental data have error

bars but, as explained in Chen and Trucano, there is insufficient information available to

sharply characterize the statistical meaning of them. The experimental data in Figure 3 define

a validation benchmark, or several such benchmarks if one wishes to look at each

experimental data point individually. One of the main purposes of the published Chen and

Trucano study was to assess the qualitative ability of ALEGRA to approximate the transition

from regular to double Mach reflection via comparisons with this benchmark. In principle

validation should not even be attempted until the verification questions we stated above can

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

18

be satisfactorily answered. In practice, unfortunately, for complex computational codes and

models full resolution of these questions is virtually impossible. The conclusions in Chen and

Trucano reflect this observation – the state of verification was so unsatisfactory (in particular,

the lack of evidence of convergence of the calculations) that the authors could only draw

qualitative conclusions from the comparison with the experimental data. There is clearly

quantitative disagreement between the reported ALEGRA calculations and the experimental

data, although the computed transition to double Mach reflection is in qualitative agreement

with the experimental data. Until better understanding of the numerical error in the

calculations can be achieved, the meaning of the quantitative disagreement is difficult to

extract.

If we assume, nonetheless, that there is an acceptable verification basis for performing

validation through comparisons with experiment and calculation as in Figure 3 and drawing

conclusions we are led to a variety of further validation-specific questions. For example, what

do the experimental error bars in Figure 3 mean? What are equivalent numerical error bars?

Validation requires both types of error bars; what does it mean if one or both are missing? Are

the depicted comparisons good, bad, or indifferent? What is the context of this evaluation?

Why was this means chosen to compare experiment and calculation? Why are these

experimental data considered to be benchmarks? Is there something better? Is the means of

comparison itself subject to sensitivities that should be quantified? Why was this particular

physical problem, Mach reflection, chosen as a validation benchmark to begin with? What

previous knowledge or context does this choice rest on? Where should we go next? What is

the next benchmark? Or is this comparison enough?

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

19

A situation like Figure 3 demonstrates the potential confusion of calibration with

validation. In other words, a decision might be made to adjust certain parameters in the

calculations to improve the agreement of ALEGRA (or any code undergoing this kind of

comparison) with the presented experimental benchmark(s). A common example of this is the

choice of a mesh when a calculation is otherwise not converged. One might apply mesh

tuning and expert judgment about local refinement of the computational mesh to achieve

some kind of better agreement with the presented data. This may then be accompanied by a

statement of sufficiency of the presented computational accuracy based on this procedure.

This process is not validation. It does not address any of the questions we posed above

regarding validation. This is a calibration process and therefore has questionable explanatory

or predictive content. Such a calibration also rests upon questionable mathematical grounds in

the present example of calculations with uncertain mathematical accuracy. Neither does such

a calibration address verification; the question of correctness of solution algorithms, their bug-

free software implementation, and the particular mathematical accuracy of numerical solution

of equations is not answered by comparison with experimental data, nor by tuning the

computed agreement with experimental data.

The computations in Figure 3 were those corresponding to the finest choice of mesh

suggested in Figure 2. However, this was a passive choice, not a deliberate calibration

(attempt to better match the experimental benchmark). Chen and Trucano simply used the

finest resolution calculations they could complete at the time in comparisons with

experimental data. Figure 2 provided evidence that finest resolution calculations were

important because the physical structure of greatest interest, double Mach reflection, only

emerged at the finest resolution. But this choice does not resolve the underlying questions of

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

20

verification because only incomplete convergence studies are reported and, therefore, the

mathematical accuracy of these calculations remains an open question. The numerical error

contribution that the particular meshing may make to the agreement or lack of agreement with

the data in Figure 3 remains open, and that is why numerical error bars were not reported in

Chen and Trucano.

We also comment that a very simple example of another common kind of calibration in a

compressible flow problem such as that shown in Figure 1 is to adjust the equation of state of

the gas defined in the numerical calculations in an attempt to better match experimental

benchmarks as in Figure 3. This may or may not be possible; and it may or may not be useful.

We emphasize here that this procedure is still logically separate from verification, hence still

leaves that question open. The value of such a calibration ultimately rests upon sufficient

verification. If numerical errors are large or if code bugs are present in Figure 3, what is the

point of adjusting a physical parameter in the calculation to achieve better agreement with the

benchmark?

This simple example emphasizes that verification questions must really be answered for

calibration as well as validation. Our comments above argue that this may be quite difficult.

But in the absence of adequate verification, the results of neither validation nor calibration can

really be fully trusted. If one insists on considering certain kinds of calibration to be

compensation for inadequate numerical resolution the foundation provided by verification is

removed in the presented computational results, making consequential validation assessments

that much harder, if not rendering them useless. We reasonably ask what the rationale is for

calibrating a code to compensate for perceived numerical discretization inadequacy when the

root of the problem might be code bugs instead. For instance, when may such a calibration

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

21

successfully match superficial quantitative features in the chosen benchmark(s) but obscure or

ignore important qualitative information that has been corrupted because of algorithm or

implementation errors?

We insist that calibration and validation are distinct. While validation should provide a

better foundation for calibration and guide its use, calibration does not replace validation, nor

does it replace verification. To the extent that the use of calibration confuses or hides the fact

that verification and validation are poor, confidence in the credibility of the resulting

calculations is misunderstood. For applications to high-consequence problems, such as

governmental policy issues, we believe that this is undesirable. In the circumstances of poor

verification and validation, calibration should be used cautiously and with a certain degree of

pessimism about its ultimate value.

2.3. Some Formalism

2.3.1. Alignment of calculations and benchmarks

Whether we are performing verification, validation or calibration, the overarching purpose

of the task is to perform the right calculations for the task; to compare these calculations with

the right benchmarks; and to draw the right conclusions. To enhance our discussion of these

issues we now find it convenient to introduce enough formalism to sharpen the distinctions

between these tasks. This will further clarify our position on validation versus calibration. The

reader should view the following presentation as mainly notional. We provide sufficient

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

22

references to specific instances of these formalisms to aid the reader who is interested in

greater details.

We emphasize again that we are focused on computational codes that solve partial

differential equations. We declared previously that the word calculation would be reserved for

the execution of a computational code for specific input, producing a given output. Let ()M ⋅

denote the code, which is a nonlinear (in general) mapping from the input to the output,

thus () :M ⋅ →P O . The input is written as parameter vector in the space P , p∈G P , where

P is a (typically) high-dimensional (for example, P is usually a subset of m-dimensional

Euclidean space mR) that serves to uniquely define the input for a particular calculation. A

calculation is then a specific choice of input pG , and the output of the code applied to this

input, ()M pG . Different choices of pG generate different calculations. The output space O is,

in principle, equally complex, reflecting the potential complexity of the output of real CS&E

codes.

The input parameter vector pG is necessary for specifying a unique input set for the

underlying code and may have components that are often functions, such as a permeability

field in porous flow, or probability distributions for stochastic parameters. Furthermore, the

components of pG will possibly be other vectors or matrices, in addition to scalars. The

complexity of the input is considerable and highly subject-matter dependent. When we state

that the vector pG is high-dimensional we mean that the number of input parameters may be

greater than the number of nominal calculations that might be performed during the course of

a verification, validation, or calibration study in the absence of uncertainty quantification

procedures. Potentially relevant pG ’s form a small subset of the indicated space for most

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

23

codes. Because of this, we find that a decomposition of this vector is important for our

purposes. Thus, we introduce the notation

 (),A Np p p= ∈ ×
G G G

A NP P (1)

In equation (1), ApG is the component of the parameter vector that specifies alignment with

the intended model application. In other words, a specific calculation for an intended

application is defined by a choice of ApG . Therefore, we assume that ApG is sufficient to

parameterize the application domain for a specified use of the code. The ApG vector, for

example, specifies geometry and other initial data, and boundary conditions. Whether the

entire application domain defined this way is accessible through validation or calibration is

another matter.

The vector NpG specifies numerical parameters and other quantities that are necessary to

execute a calculation and control its numerical accuracy. NpG includes parameters necessary

for adjusting the numerical influence of discretizations, including both temporal and spatial

characteristics. NpG can include iterative accuracy controls, computational parameters devoted

to artificial smoothing and diffusion or other similar regularizations, and parameters that

control automated algorithm operation, as in automatic mesh refinement control and hybrid

algorithm operation. The vector NpG may or may not be independent of ApG . For example, a

change in ApG might change numerical characteristics controlled by NpG .

For example, suppose that we are performing validation. In this case, the calculation is to

be compared with experimental data. The model is constrained by the need to calculate in

alignment with the chosen experimental benchmark to the highest degree. This means ideally

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

24

that the computational geometries, materials, and other initial data should be the same as the

experimental benchmark, and the boundary conditions should be the same. The parameter

vector ApG is the means by which this is accomplished, or approximated if it cannot be

perfectly achieved.

If we consider the example in Figures 1-3, the subject code is ALEGRA. The purpose in

this case is to perform ALEGRA calculations that compare with oblique shock reflection

experiments. The vector ApG in the calculations of Figure 3 has the following components:

0ρ - Initial gas density;

0P - Initial gas pressure;

0I - Initial gas specific internal energy;

γ - Ideal gas gamma constant;

M - Incident shock wave Mach number;

θ - Wedge angle;

(In calculations, the wedge is treated as a boundary condition, not as a material included in the

calculation.) These parameters are sufficient for alignment with the experiment because real

gas effects (which would increase the number of parameters required to describe the gas) and

roughness of the wedge (which would require parameters for an appropriate boundary

condition or parameters involved in the treatment of a real wedge in the calculations) are

considered to be irrelevant in the extraction and interpretation of the presented experimental

data.

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

25

The vector NpG in these calculations includes (but is not restricted to) artificial viscosity

coefficients, hourglass control coefficients, meshing parameters, and choice of numerical

algorithm features (such as remap characteristics) in the ALEGRA numerical solution of the

Euler equations. The parameters in NpG do not control the alignment of the validation

calculations presented in Figure 3 to the specific experiment performed for each data point.

The only alignment parameter actually varied in Figure 3 is the wedge angle. The initial data,

including Mach number of the incident shock, did not vary. We are not accounting for

uncontrolled variability in the initial data of the experiments, nor for inaccuracy in measuring

experimental parameters, such as the wedge angle.

The alert reader will notice that, in fact, the calculations presented in Figure 3 do not

precisely align with the experimental benchmarks, because the choice of computational

wedge angle was often different than that for the experimental data. This was a decision made

in the original modeling approach, and does not affect our use of this example to illustrate the

principle of alignment.

We have previously discussed the concept of alignment in [16]. We prefer to deal with the

issue in a simpler form here, but in fact alignment poses a problem that is quite difficult for

complex validation and calibration tasks. Our concept of alignment also resembles discussion

of the role of “cues” for general forecasting methods in the paper of Stewart and Lusk [17].

For example, in a perfect world the experimental benchmark that we may wish to use will be

exactly defined by the parameter vector ApG (the experiment has neither more nor less nor

different parameters than the calculation) and we know precisely what the values of this

vector are for the chosen benchmark. One could choose to make this a necessary condition for

applicability of an experiment as a validation benchmark.

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

26

Unfortunately, if one enforced that restriction, one would rarely be able to use

experimental data as a benchmark. Even in the simpler case of verification, we may not be

able to properly define ApG to align with the assumptions underlying a chosen analytic

solution of the partial differential equations of interest, or with other mathematical benchmark

requirements. It is well-known that there exist analytic solutions, for example in compressible

hydrodynamics, that may require initial and boundary conditions that are not implemented in

a given code. A code modification is required to allow full alignment with such a benchmark.

The Method of Manufactured Solutions typically creates this problem through the need to

create problem-specific boundary conditions or source terms for the derived test problems

[7,18].

For validation or calibration based on experimental benchmarks, the choice of ApG for the

code is often at best a poor approximation of the experimental reality. For example, there may

be parameters of importance to the experiment that are not even recognized in ApG . Attention

to uncertainty in this specification is thus required. And, even if we know that ApG is a good

approximation to an exact specification of an experimental benchmark, it is unlikely that its

experimental values are known precisely. Hence the experimental specification of ApG

contains uncertainty. These two issues are major contributors to the uncertainty underlying

experimental benchmarks that we must deal with in validation and experimental calibration.

Technically, uncertainty has two distinct meanings (see [19-28]) that we use in this paper.

Aleatory uncertainty, also called irreducible uncertainty, is random. Aleatory uncertainty is

used to describe inherent variation associated with a quantity or phenomenon of interest.

Further information does not usefully reduce the uncertainty. This is in contrast with

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

27

epistemic uncertainty, also called irreducible uncertainty (and called subjective uncertainty by

Helton), which reflects lack of knowledge about the quantity or phenomenon. The implication

is that this uncertainty can be usefully reduced in principle through the acquisition of more

information. While probability and statistics is the defined means of quantifying aleatory

uncertainty, the quantification of epistemic uncertainty is more difficult. A recent issue of the

journal Reliability Engineering and System Safety is entirely devoted to this topic [29].

Proper definition of ApG is an epistemic uncertainty problem, while particular experimental

values of properly aligned elements of ApG is an aleatory uncertainty problem. In general, we

do not expect to have all of “nature’s parameters” available in the code’s ApG . However, one

of the most important aspects of designing and performing dedicated validation experiments

[13] is to maximize the likelihood that the code’s ApG is sufficient to properly align code

calculations with experiments. For validation, at least, we thus have some expectation of the

sufficiency of ApG to achieve alignment with the experiment. Scientific discovery (as opposed

to validation) is more likely to result in doubt about the ability of ApG to achieve alignment

with an experiment, as well as the ability of ()M ⋅ to provide a rational basis for that

alignment. Further discussion of these issues is beyond the scope of this paper. We will

simply assume the existence of (),A Np p p=
G G G and ignore in particular the potential uncertainty

in the definition and values of ApG .

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

28

2.3.2. Benchmarks

We introduced the decomposition of the parameter (),A Np p p=
G G G for the purpose of

refining the definition and application of benchmarks. We now state that a benchmark is a

choice of ApG and the benchmark data associated with that choice (along with the implied

methods of comparison with calculations and conclusion-drawing procedures). We write a

benchmark as ()AB pG . This notation suggests that a benchmark simply maps the alignment

parameters into information, either experimental or mathematical (or computational, if an

alternative code calculation is the chosen benchmark), that can be quantitatively compared

with some or all of the output of the corresponding code calculation (),A NM p pG G . ()AB pG may

be extremely complex, for example including both temporally and spatially resolved data.

Certainly, in the case of experimental data by simply writing the benchmark as a function of a

parameter vector we are claiming more than will be the case in many experiments. However,

as we are emphasizing the logical nature of benchmarks here, we will take this simplifying

liberty.

In the case of experimental data, the benchmark information ()AB pG will have uncertainty

in the form of bias and variability, for example due to diagnostic uncertainty, and

experimental bias and variability. We may also have uncertainty about whether or not the

experiment really provides required benchmark information, such as that specified for

validation benchmarks by Trucano, Pilch and Oberkampf [13]. One should most generally

consider the benchmark information ()AB pG as a random variable, process or field. If we

formally acknowledge aleatory uncertainty in ApG , then ()AB pG is also a function of a multi-

variate random variable. This has technical implications for how we should ideally perform

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

29

verification, validation, and calibration, as it will strongly influence the methods used to

compare the benchmark information and code calculations, as well as inferential procedures

dependent upon those comparisons.

To the degree that one feels uncertain with whether a given set of data should be used as a

benchmark, say for validation, one is likely dealing with epistemic (lack of knowledge)

uncertainty. For example, if person A claims “It is important to match experimental data E”,

person B may alternatively argue “E is the wrong data,” C may argue “But we don’t know

how close we need to be to E,” and D may argue “The theory required to interpret the

experiment is wrong.” All of these arguments may contribute epistemic uncertainty to the

benchmark. This issue is not academic, but must be dealt with constantly in experimental

validation [13].

Different benchmarks defined as above can result from either varying the benchmark

function ()B ⋅ , (){ }, 1, ,jB j J⋅ = … , by varying the alignment parameter, { }, , 1, ,A ip i n=
G … , or

both. An example of the former case is to perform measurements of different physical

quantities at the same spatial location. An example of the latter is to measure the same

physical quantity at different spatial locations or times. In the most general case, a set of

benchmarks is then defined by (){ }, , 1, , ; 1, ,j A iB p i n j J= =
G … … . In the following, we will

only consider variation of the alignment vector in defining a set of benchmarks. Thus, we

define a set of benchmarks as the collection of benchmark data (){ }, , 1, ,A iB p i n=
G … . We will

also assume that the benchmark function changes for verification, validation and calibration,

without introducing this explicitly in the notation.

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

30

 Verification, validation and calibration are all focused on defining the appropriate set

(){ }, , 1, ,A iB p i n=
G … . We will loosely state that a chosen set of benchmarks defines the

verification (validation, calibration) domain in the parameter space AP through the set

{ }, , 1, ,A ip i n=
G … . This domain is therefore a discrete set, although it is clearly desirable to

think of it as lying within a continuous region that contains the discrete choices of ApG as

much as possible. To what extent this can be done is also an open issue, although this

assumption is commonly made in practice. The reason for this is that results of comparisons

of code calculations with such a set of benchmarks are often interpolated to infer presumed

code credibility (or not) between the benchmarks. This implies an assumption about an overall

domain containing the set { }, , 1, ,A ip i n=
G … . The reader should observe that we are enforcing

our constraint of alignment by emphasizing that only the parameter vector ApG is meaningful

in defining these domains; NpG does not enter this discussion. For example, in Figure 3 the set

of benchmarks is () [](){ }, , 1, ,18A i r inc iB p p p iθ= ∆ ∆ =
G … (there are 18 experimental data

points in the figure, one of which has no reported error bar).

We are choosing our words in this discussion carefully. We do not care about the issue of

whether experimental data are “true” in some absolute sense of the philosophy of science. We

are simply defining a benchmark to be a choice of data that we are willing to use for purposes

of verification, validation or calibration, that is, to provide information for some stated goal.

We assume that it is understood that there are good reasons to use the specified information as

a benchmark. We have the expectation that these reasons will include evidence that the

benchmark is accurate and that a calculation can be properly aligned with it. We also have the

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

31

additional expectation that if there is little or no evidence that a benchmark is actually

accurate or believable for the purposes of the stated task, then it will not be used.

Clearly some principles should guide or strengthen the logic of accepting a benchmark for

the purpose of verification, validation, or calibration. We have defined such a set of principles

specifically for validation [13]. We have also documented arguments as to why we believe

that code calculations themselves are undesirable benchmarks [5]. The debate, of course, is

centered on the use of words like “reasonable” and “evidence.” For example, it is fair to ask

whether or not we believe that the data shown in Figure 3 are a “reasonable” validation

benchmark. This issue was discussed in the original reference [14], and it was determined that

in fact there are significant problems associated with use of these data in a precise validation

exercise.

The fundamental purpose of benchmarks is to draw specific conclusions from their

comparison with calculations. In the case of verification, this purpose is to assess the

mathematical accuracy of the numerical solutions. For validation, this purpose is to assess the

physical fidelity for a stated application of the mathematical equations solved in the code. For

calibration, the purpose is to choose parameter values that improve the agreement of the code

calculations with the chosen benchmarks, in the belief that such tuned accuracy improvement

will increase the believed credibility of the code (a goal we consider to be incorrect, as we

commented in the Introduction). The choice of benchmarks must vary depending on the

purpose of the comparisons.

Uncertainty is present in the typical code calculations we are interested in, not only in the

benchmarks themselves. Uncertainties in calculations have been discussed in many places

(see, for example, Oberkampf et al. [30]). Uncertainty in a calculation ()M pG may be present

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

32

due to uncertainty in ApG or uncertainty in the specification of NpG , although the latter point is

more controversial. However, uncertainty in ()M pG also arises independent of pG for two

reasons. First, there is the epistemic uncertainty called structural uncertainty, or “model form”

uncertainty. Its origin is the question of whether the so-called “conceptual model” [6]

underlying the mathematical equations solved in the code is appropriate for the intended use.

This includes unknown-unknown factors, such as what physics is missing from the conceptual

model that is necessary to describe the relevant physical phenomena. To the degree that

validation is incomplete this uncertainty looms large. (Of course, model-form uncertainty

poses a broader problem than simply the issue of its contribution to uncertainty in code

calculations.) Second, there is the epistemic uncertainty associated with imprecise

characterization of the computational error in any specific calculation. To the degree that

verification is incomplete this uncertainty looms large.

Thus, to perform the right comparison between a code calculation and a benchmark, in

practice as well as in principle the uncertainty present in both should be acknowledged and

quantified in that comparison. This increases the difficulty of verification, validation and

calibration considerably. The potential presence of epistemic uncertainty in both the

benchmark and the code makes the task even harder. The reader should now assume that all

uncertainties under scrutiny in this paper are quantifiable via probability. We thus avoid

additional philosophical arguments about how to properly represent epistemic uncertainties.

The interested reader should consult reference [29].

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

33

2.3.3. Comparisons

We now further formalize comparisons between calculations and benchmarks. Up to this

point, we have treated the comparison dimension of benchmarks as implicit. Here we

explicitly discuss it. Given the benchmark ()AB pG and a corresponding aligned calculation

(),A NM p pG G a comparison is then a non-negative function of the two that is a measure of how

similar (or different) they are. We write this as () (), ,A N AM p p B p⎡ ⎤⎣ ⎦
G G GD . For example (as

further observed below) the comparison could simply be a norm (in an appropriate space) of

the difference of (),A NM p pG G and ()AB pG , in which case the comparison is a functional that is

equal to zero when the benchmark and calculation are identical (a highly unlikely possibility).

Given the complexity and uncertainty that characterizes both the benchmark and the

calculation, however, we reserve the possibility that the comparison cannot be expressed

simply as the simple difference of the two quantities.

The concept of a comparison can be extended to a family of benchmarks. For example,

supposed the benchmark family is simply parameterized by a set of alignment vectors, as we

have assumed here. Then, given the family of benchmarks (){ }, , 1, ,A iB p i n=
G … and the

aligned family of calculations (){ }, ,, , 1, ,A i N iM p p i n=
G G … the resulting set of comparisons is a

set of non-negative real numbers:

 () (){ }, , ,, , , 1, ,i
A i N i A iM p p B p i n⎡ ⎤≡ =⎣ ⎦
G G G …D D (2)

For the more general case of the benchmark function ()B ⋅ itself changing, rather than just the

alignment vector, then it is possible that the comparison will also change. We point out below

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

34

that we expect this change of comparison function to be inevitable in distinguishing

verification, validation, and calibration, but we don’t want to wrestle with this additional

complexity.

The main logic underpinning (2) is the simple idea that if all [],i ⋅ ⋅D are “small” real

numbers for the presented set of benchmarks, then the calculation and benchmarks are “close”

over a subset { }, , 1, ,A ip i n=
G … of the alignment parameter space, and this should lead to a

conclusion about, say, verification or validation of the model. What “small,” “close” and

“conclusion” mean in this logic, is in almost all cases dominated by subject matter and the

specifics of the chosen benchmarks and comparisons. An explicit specification of these words

for a defined set of benchmarks would complete a full formalism of a benchmark set that

would be compatible with our original definition of the term benchmark, but this is a task that

we do not attempt in this paper. Such a formalism would eliminate, for example, intuitive

statements of how good the agreement of a calculation with experimental benchmark

information is, and replace it with quantification of the comparison and requirements on the

precision of the comparison that allow the words “good agreement” to be used to describe it.

In many cases the specific choice of [],⋅ ⋅D is literally a mathematical norm, such as

absolute value in the case of scalars (as in Figure 3), or pl norms for more complex data. In

the case of benchmark data like that in Figure 3, one example of a comparison is

 () () () (), , ,, , calc exptr r
A i N i A i i i

inc inc

p pM p p B p
p p

θ θ∆ ∆⎡ ⎤ = −⎣ ⎦ ∆ ∆
G G GD (3)

Equation (3) is written as if the calculations and experimental benchmarks in Figure 3 had

been defined at the same values of θ . Since this is not precisely true for the particular data of

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

35

Figure 3, in that case an alternative comparison can be defined in which we interpolate

between the experimental benchmarks to determine a value of []()ˆ expt

r inc ip p θ∆ ∆ for the

angles θ̂ that was actually used in the calculations and then apply the same absolute value

comparison as in (3). This procedure is permissible if the interpolated experimental data is

judged to still be a benchmark, which need not be the case. (Clearly, the desirable procedure

for this example would have been to precisely align the original calculations with the chosen

benchmarks.)

Appropriate acknowledgement and quantification of uncertainty in the benchmarks and

calculations in (2) adds significantly greater technical difficulty to the comparison exercise, as

well as to the understanding of “close” and “conclusion” previously mentioned. For example,

whatever the set of calculated outputs (){ }, ,, , 1, ,A i N iM p p i n=
G G … may mean from the

deterministic point of view, it means something different if we have quantified computational

uncertainty in the stated set of calculations. At the very least, we would then hope that we

have enough information to replace (){ }, ,, , 1, ,A i N iM p p i n=
G G … with a collection

like{ }, ,, , 1, ,i iM M i nµ σ = … , where ,iM µ is the mean of the calculation (calculation now

interpreted as a random variable, process, or field) at (), ,,A i N ip pG G and ,iMσ is a measure of

fluctuation of the calculation at (), ,,A i N ip pG G , perhaps chosen as a statistic of central tendency

such as variance. Separate comparisons would examine differences between the mean an

variance of benchmarks and calculations in this case. In general, probability distribution

differences between benchmarks and calculations could be compared. This would require a

more elaborate formalism.

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

36

Conclusions based on uncertainty quantification of the information in the benchmarks, the

calculations, or both must of necessity be interpreted as statistical or probabilistic information.

For random variables with known probability distributions that appear in the comparison (2),

the quantification [],⋅ ⋅D can be achieved by comparing probability distributions or their

moments. Greater complexity results when only statistical characteristics are known. In such a

case, probability distributions are now estimated, leading to more complicated [],⋅ ⋅D ’s, such

as might involve the use of estimated probability distribution parameters and confidence

intervals [31]. If epistemic uncertainty is also of concern, then combined statistics from

families of probability distributions may be compared (through the use of second order

probability, for example). We will not probe more deeply into this challenge, except to

emphasize that it exists. Helton [24] discusses this issue from a general perspective; other

references of interest are [27,28].

The representation (2) of a set of calculation-benchmark comparisons presumes ideal

parameter alignment; that is, the choice of ,A ipG is the same for each benchmark and

calculation being compared. This leads to questions specific to uncertainty in the alignment

vector itself. If we had to apply (2) with a significantly different choice of ApG in a benchmark

versus that in a calculation, it is unlikely that (2) would be small. Furthermore, even if the

comparison was small in such a case, what does that mean? But, what does “significantly

different” really mean? The fundamental issue here is that if uncertainty is acknowledged in

the definition of ApG , then the value of the alignment vector in the benchmark need not exactly

agree with that in the calculation. For example, if we ignore the epistemic uncertainty

contribution mentioned above and only consider variability in ApG , then specific choices of

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

37

ApG in (2) should be viewed as samples from an underlying probability distribution. Do these

sample values need to be identical for the benchmark and the calculation to apply the

comparison (2)? In principle, both the calculation and benchmark components in (2) should

treat ApG as a random quantity, but in practice this is often not done. For example, if and

experimental benchmark is defined so that ApG contains an experimental parameter with a

probability distribution, often the value of this parameter used in a calculation is the mean of

this distribution. Is this the most useful or appropriate way to conduct a calculation-

benchmark comparison? Including epistemic uncertainty in ApG makes the problem more

difficult. Here, we simply intend to acknowledge the presence of this difficulty without

further analysis. We emphasize that our view of alignment between benchmarks and

calculations in comparisons like (2) serves as a logical guide, but its practical application is

not transparent.

In principle, the collection of comparisons in (2) can be summarized in a single non-

negative real number (which may or may not be desirable). A summary comparison in this

case is written as the sum of the individual comparisons:

() (){ }

() ()

, , ,
1

, , ,
1

, , 1, ,

, ,

n
i

A i N i A i
i

n

A i N i A i
i

M p p B p i n

M p p B p

=

=

= =

⎡ ⎤= ⎣ ⎦

∑

∑

G G G …

G G G

D

D

D
 (4)

For example, if we assume that we had calculations ideally aligned with each of the eighteen

experimental data points in Figure 3, then equation (4) would look like:

 () (){ } () ()
18

, , ,
1

, , 1, ,18 calc exptr r
A i N i A i i i

i inc inc

p pM p p B p i
p p

θ θ
=

∆ ∆
= = −

∆ ∆∑G G G …D

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

38

The summary (4) also suggests the possibility of weighting of individual contributors to a

collective benchmark, for example as in the form

() (){ }, , ,

1

, , 1, ,

1, 0

n
i

A i N i A i i
i

i i

M p p B p i n w

w w
=

= =

= ≥

∑

∑

G G G … DD
 (5)

In terms of Figure 3, equation (5) expresses the possibility that we may care about certain

wedge angles in the figure more than others for purposes of validation. (In the original Chen

and Trucano reference, this was exactly the case, although not expressed in this formal sense.

In that study, the transition to double Mach reflection near a wedge angle of 50 degrees in the

benchmark data was of the greatest interest for comparison with calculations.)

Allowing different choices of benchmarks, rather than only different alignment vectors

ApG , means that quite heterogeneous comparisons might be lumped together within equations

like (4) or (5). For example, one of the experiments in Figure 3 could have had a time-

resolved measure of a gas field variable at a spatial location, so that an appropriate

comparison for that data would be a choice of a function space norm. In general, ()M ⋅ and

()B ⋅ will widely different output information, with correspondingly different units (for

example, energy versus pressure). This means that summary weighted comparisons in the

form of (5), if desirable, require properly scaled and dimensionless individual comparisons

Because there is no basis for expecting verification, validation or calibration benchmarks

to be the same, there is also no reason to expect that verification, validation or calibration

comparisons should be the same. Thus, for the same code calculation (),A NM p pG G , we may

have different choices of comparisons [],⋅ ⋅VERD , [],⋅ ⋅VALD , and [],⋅ ⋅CALD defined. The choice

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

39

of a collection of benchmarks (){ }, , 1, ,A iB p i n=
G … can also vary depending on the purpose of

the exercise. As emphasized above, comparisons should acknowledge uncertainty in the

calculations and the benchmarks in general. In calibration, uncertainty is traditionally

acknowledged in the benchmark data, but not in the associated calculations. (We discuss this

in detail in Section 3.) In validation, the quantitative treatment of uncertainty in both

benchmarks and in calculations is understood to be a major challenge. Oberkampf and

Trucano [6] present an analysis of useful general characteristics of a validation comparison

(called a metric in that paper) and a specific example. A different formulation of validation

comparisons is found in Zhang and Mahadevan [32] and Mahadevan and Rebba [33].

In verification, we believe that the role of uncertainty has not been recognized to the

degree that it should be. In our view, uncertainty in verification arises from the need to report

calculation accuracy rigorously, and the dependence of any reported accuracy upon

mathematical rigor of the algorithms in the code, as well as their software implementation.

Reliability of software as a probabilistic concept is recognized [33] and provides some

foundation for addressing this topic in the breadth we are interested in, but discussion of this

concept is beyond the scope of this paper (although we do make a further comment about this

topic in Section 2.3.4).

Verification and validation have the goal of quantitative assessment of the code credibility

for a specified application. In terms of our discussion in this paper, we emphasize that

verification and validation at least require (1) the choice of the appropriate benchmarks

(){ }, , 1, ,A iB p i n=
G … ; (2) the evaluation of [],⋅ ⋅VERD and [],⋅ ⋅VALD ; and (3) inference about

the credibility of the model as a result of these evaluations. They also require significant

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

40

attention to the numerical parameter vector NpG and its role in determining the numerical

accuracy of calculations. Calibration, on the other hand, ultimately is simply an optimization

problem in the absence of acknowledged coupling to verification and validation (we will

discuss the influence of this coupling in Section 3). In our language here, calibration depends

upon a calibration comparison [],⋅ ⋅CALD . The calibration problem can then be summarized as

the introduction of an appropriate objective function of the calibration comparison

 () (){ }(), , ,, , , 1,...,A i N i A iO M p p B p i n⎡ ⎤ =⎣ ⎦
G G G

CAL CALD (6)

In other words, ()O ⋅CAL is a function of the value of a set of calibration comparisons applied

to selected benchmarks and appropriately aligned calculations. An weighted aggregation of

comparisons as in equation (5) could also be used. The task of calibration is then to minimize

this objective over a subset of the parameters. While this subset could include the physical

alignment parameters ApG (see [35]), ideal alignment fixes all of the components of this

vector. The assumption of ideal alignment thus means that the calibration minimization can be

performed only over the numerical parameters NpG (recall that examples of components of this

vector were discussed in Section 2.3.1). We therefore write the calibration minimization

problem as:

{ }

() (){ }()
,

, , ,, 1, , 1,...,
min , ,

N i
A i N i A ip i n i n

O M p p B p
= ⊂ =

⎡ ⎤⎣ ⎦G …

G G G
CAL CALD

NP
 (7)

To the degree that one believes that components of ApG should be included in the

calibration problem, this reflects imperfect alignment between the benchmarks and the

calculations. It is our experience that in this case the calibration problem is then sometimes

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

41

perceived as a means of specifying these alignment parameters. We question the logical

validity of such a conclusion.

For the shock wave example of Figures 1 through 3, under the assumption that ApG is

well-defined for these experimental benchmarks the substance of our remarks above is that it

is unacceptable to consider adjusting the components of ApG , that is wedge angle, initial gas

constitutive parameters, and the incident shock Mach number, to improve agreement of

calculations with the benchmarks in Figure 3. Claiming probabilistic variability in the

components of ApG does not refute this statement. Known variability, such as in the wedge

angle measurement, should instead be used to drive a computational uncertainty

quantification that reflects that variability, and which can be used in a more sophisticated

validation comparison.

From our point of view, it is permissible to adjust the components of NpG to improve

agreement with the experimental benchmarks in Figure 3, although the consequences

contribute neither to verification nor validation. (Adjusting NpG to better agree with a

verification benchmark is a logical part of verification, however.) Using the previous example

and again assuming that calculations have been performed that are aligned properly with the

eighteen experimental benchmarks, one form of (7) that could result from such a procedure is:

{ }

() ()
, , 1, ,

min , 1, ,18
N i

calc exptr r
i ip i n

inc inc

p pO i
p p

θ θ
= ⊂

⎛ ⎞∆ ∆
− =⎜ ⎟⎜ ⎟∆ ∆⎝ ⎠

G …
…CAL

NP

In general, if uncertainty is included in the calibration benchmark and the associated

calculations, then (7) is an optimization under uncertainty problem. As we have stated

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

42

previously, for simplicity the reader should view all uncertainty as probabilistically

characterized, in which case (7) is a stochastic optimization problem. If only uncertainty in

the specification of { },A ipG and in (),A iB pG is of concern, this optimization problem is a

classical probabilistic parameter estimation problem. We review this problem in Section 3.

Given the difficulties of verification and validation that we have mentioned above, it is likely

that code calculation uncertainty will be another contributor to problem (7). Including

calculation uncertainty in this calibration problem substantially increases the conceptual

difficulty of calibration and we will discuss this further in Section 3.

Generalizing the point we made in the shock wave example, we do not view uncertainty in

the specification of the alignment parameters { },A ipG for a set of benchmarks as a license to use

these parameters in calibration. It is more desirable that this uncertainty be quantified and

included in the calculated predictions that are of interest. This approach is compatible with the

general view that for important computational predictions, quantifying uncertainty is more

important than seeking to reduce it through conservative assumptions and calibration

[36,24,37-39].

2.3.4. Credibility

We now turn our attention to credibility of a code for specified applications. Use of the

word “credibility” as a description of the quality of a code and its associated calculations can

be problematic because of the perception of imprecision associated with the concept. The

Oxford English dictionary [40] defines credible to mean “capable of being believed.” In the

particular case of codes, for example, credibility does not require truth, accuracy or fidelity.

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

43

All it requires is belief. However, to be pragmatic and rational, we expect that the credibility

of a code for an application rests on good reasons and solid evidence. While evidence is

certainly provided by V&V as we have discussed here, reasons for perceived credibility is not

necessarily restricted only to V&V. For example, the subjective belief of a scientist using the

code will undoubtedly count for something in such a consideration. Nonetheless, our opinion

is that objective and precise reasons for credibility are desired over subjective and imprecise

reasons, certainly to the degree that belief in code credibility is needed for important

decisions. We consider the evidence underlying objective and precise reasons for belief a

code is credible for a specified application to be strictly provided by V&V. It is less clear that

calibration provides such evidence.

Given the underlying uncertainty in verification, validation and calibration, it is worth

restating the impact of this uncertainty on the logic of (The discussion below is a modification

of a line of argument on general model uncertainty that has been stressed by John Red-Horse.

See [41].)

- Verification in the comparison of code calculations with verification benchmarks is

conditioned on software implementation correctness. By this, we mean that

uncertainty in verification, for example in the accuracy of one or more code

calculations, depends on the uncertainty in the software implementation. For example,

formal techniques such as convergence studies or error estimators may provide

evidence that calculations are accurate, but belief in these estimators, or the

probability that they are providing accurate information, is dependent upon the

probability that there are no software errors corrupting the results. Thus, the numbers

that enter into and emerge from a verification comparison can be regarded as

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

44

probabilistic and conditioned by the probability of software implementation

correctness.

And, to the extent that there is a probabilistic characterization of the likelihood of a

bug in the software, this likelihood corrupts definitive acceptance of the results of any

verification comparison, even if the comparison is based on mathematically rigorous

procedures. This is one reason why techniques that provide further evidence that

software is implemented correctly, such as software engineering standards and

sensitivity analysis in software testing, formally provide enhanced confidence about

the numerical accuracy of the code.

If the reader does not accept the view that verification has this kind of probabilistic

component, the logical dependence of verification upon software implementation still

makes complete sense. The deterministic form of our argument is that calculation

verification depends upon code verification [7,6]. However, we believe that a correct

representation of the issue of verification through benchmarks within a probabilistic

characterization of software errors is represented by this logic. The reader should

consult Singpurwalla and Wilson [34] for further discussion of the concepts of

probabilistic software reliability.

- Similarly, a probabilistic interpretation of validation through the application of

validation comparisons is conditioned by the probability that the verification evidence

accumulated through verification comparisons is sufficient to provide a high

probability that the algorithms and software implementation are correctly and

accurately solving the underlying equations of the code.

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

45

- Finally, calibration is conditioned by the probability that validation has been

successfully performed. We will summarize at least one way to make the logical

dependence of calibration upon validation mathematically precise in Section 3.2, when

we discuss the implication of acknowledging the so-called model discrepancy in

calibration procedures

The nested probabilistic dependencies that we have suggested above link the three

benchmark tasks that we have defined in this paper. Recognition of and incorporation of these

dependencies in verification, validation, and calibration seems to be necessary for achieving a

quantitative grasp of credibility of code calculations. But while we can argue that this logic is

necessary, we are not in a position to claim that it is sufficient for establishing a quantitative

picture of code credibility.

A probabilistic interpretation of credibility of the code for stated applications results from

our view of conditional probabilistic inference as a product of the application of V&V

benchmarks. This credibility is really based upon the results of applying verification and

validation benchmarks rather than calibration benchmarks. We hypothesize the existence of a

formalism that quantifies credibility resulting from defined V&V benchmark studies as

functions of the comparison results, for example [](),⋅ ⋅VERDred
VERC and [](),⋅ ⋅VALDred

VALC . The

collective information embedded in these quantities, assuming they can be formulated, should

summarize the degree to which we believe in the numerical accuracy and physical fidelity of a

model for an intended predictive application. This belief will be probabilistic and we

hypothesize a Bayesian “degree of belief” interpretation of this probability (see Earman [42],

chapter two).

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

46

It is fair for the reader to question whether such a formalization of “credibility” can ever

be achieved. One view of this as a possibility is given in Section 3 below, where we argue that

incorporating model uncertainty in calibration in principle can increase our degree of belief in

the value of the calibration. We also consider two other examples of credibility formalization.

The first example of a credibility function is a simple Boolean function (Pass/Fail)

centered on a verification benchmark. For the Mach flow application presented in Figures 1-3,

verification of the numerical compressible flow algorithms is an important step. One

recognized benchmark widely used in the computational shock wave physics community to

test compressible flow algorithms is the Sod test problem [43]. This is a one-dimensional

Riemann problem that tests the ability of a code to properly compute the elementary wave

family (shock, contact discontinuity and rarefaction fan) for a shock tube. This time-

dependent problem has a well-known analytic solution as long as the associated waves have

not struck the boundaries of the problem.

The verification comparison for this problem is defined as follows:

1. Choose a time (]0,S It t∈ , where It is the first time that a shock, contact, or

rarefaction intersect the spatial boundaries of the problem (the spatial domain can

be assume for convenience to be the interval []0,1x∈ .

2. Compute the []1 0,1l norm of the difference between the computed density profile

at time St , (),calc Sx tρ , and the discretized benchmark solution (),Sod Sx tρ . Thus,

we have the comparison:

 () () () () []1 0,1
, , ,calc S Sod S l

M p Sod p x t x tρ ρ= −⎡ ⎤⎣ ⎦
G GD

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

47

3. Now define a positive real tolerance ε by some prescription. (This tolerance is

typically chosen by subject matter expertise in the absence of formal convergence

studies with extrapolation to the limit of zero mesh spacing). Then, we define a

credibility function as:

() ()() () () []()
() () []

1

1

0,1

0,1

, , ,

Pass, if , ,

Fail, otherwise

calc S Sod S l

calc S Sod S l

M p Sod p x t x t

x t x t

ρ ρ

ρ ρ ε

= −⎡ ⎤⎣ ⎦

⎧ − <⎪= ⎨
⎪⎩

G GDred red
VER VERC C

The meaning of this statement is: the code is unacceptable if red
VERC returns the fail value.

(The reason for the failure may be algorithmic, code implementation, user error or all three.)

It is simply a necessary condition to consider using the code that red
VERC for the Sod problem

yields “Pass”. The Sod problem is a relatively benign test problem. Any code that is used to

compute the experiments with data in Figure 3 should be expected to pass this test, hopefully

in a logically precise sense as suggested above. Passing this test is not sufficient to guarantee

mathematical and numerical accuracy for the computed results in Figure 3, however.

In general, credibility functions similar to the example above can be constructed for

verification test problems. We have made a leap in formalizing a demand that passing these

tests be interpreted as necessary conditions for expectation of mathematical and numerical

accuracy of codes for defined applications. In general, we claim that passing such tests is not

sufficient for this expectation. How sufficiency can be established through a series of

benchmarks with these kinds of credibility functions is an open problem. Establishing

sufficiency almost surely requires a standard for code accreditation that is defined by the

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

48

appropriate subject matter community. We are unaware of the existence of such standards in

CS&E. A preferable alternative to defining sufficiency by determination of a panel of experts

is to rigorously prove that the solution algorithms implemented in the code are solving the

corresponding partial differential equations correctly. We believe that this level of proof has

not yet been achieved in general for CS&E.

As a second, highly-speculative example of a credibility formalism, we comment that in

statistical software reliability theory [34], statistical models of software failures are developed

that can be used to predict, for example, the probability that one or more failures will be

detected over a future interval of time. The example of the Sod problem used above

demonstrates an extension of the notion of a software failure to include failure to pass CS&E

benchmark tests. It may then be possible to use probabilistic prediction of future detection of

benchmark failures as a means of defining credibility for the code. The execution of such a

strategy is far from obvious, but its interpretation in terms of credibility can be made clear.

For example, if [],current currentF t t T+ is the probability of detecting one or more failures in the

time interval [],current currentt t T+ (a period of time T into the future) one might define

credibility as: if [], 0.01current currentF t t T+ > , then the code fails; if [], 0.01current currentF t t T+ ≤ ,

then the code passes. In words, if the probability of a detected failure is large enough, the

code is not credible; if the probability of a detected failure (extended to include benchmark

tests) is small enough then the code is credible (say for the purpose of using in validation or

for an application). Clearly these kinds of assessments cannot be decoupled from the intended

application of the code. The present discussion is only intended to introduce the possibility of

using this kind of approach in credibility quantification.

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

49

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

50

3. UNCERTAINTY AND PREDICTION IN CALIBRATION

3.1. Introduction

In this section, we will further explore the topic of predictive credibility by considering

the calibration problem further. Our goal is to expand the scope of the calibration problem

from a traditional formulation that neglects model uncertainty to a formulation that explicitly

acknowledges model uncertainty. In the context of the present paper, an examination of the

role of model uncertainty in calibration provides additional insight into the discussion of

Section 2.

We begin by briefly reviewing classical calibration, and the treatment of benchmark

uncertainty in this context. The biggest constraint on the credibility of classical calibration

(parameter estimation) to predict response values is the failure to acknowledge uncertainty in

the calibrated model (in the language of this literature; for us, a code is an example of a

model). Given this understanding, we then review some recent research in Bayesian

calibration methods that formally incorporates an analysis of model uncertainty. We call this

methodology Calibration Under Uncertainty (CUU).

The focal point of this analysis is the formalization of a model discrepancy term that can

then be included in Bayesian calibration methods. Model discrepancy is a quantification of

the deviation of the model from a chosen set of benchmarks. In other words, model

discrepancy is related to the results of verification and validation as described in Sectin 2. Our

belief is that the study of V&V benchmarks and chosen comparisons yields information that

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

51

can be used to quantitatively define or constrain this discrepancy. It thus seems likely that

research on CUU provides, or will provide, useful insight into the meaning and applicability

of the type of conditional probability that we suggest in (10), although we will not explore this

idea in any detail in this paper.

Finally, we move one logical step further in the process of dealing with model uncertainty

in calibration and suggest a possible relationship between CUU and computational learning

theory. The advantage that both Bayesian and learning theory methods can bring to model

calibration is the formal representation of model discrepancy which can be updated over time

as one gains additional information.

We will often use the word “model” in this section, rather than “code,” in conformance to

the typical language of the topics we review.

3.2. Traditional Calibration

3.2.1. General comments about statistical models

The most common example of a calibration method used in practice is linear least squares

regression. While linear regression may not often capture the complex phenomena in CS&E

models, we list the assumptions underlying linear regression here as a starting point for

understanding the predictive capability one might obtain using linear regression.

Regression models are a class of statistical process models. The underlying assumptions

used in statistical process modeling are [44,45]:

1. The underlying process has random variation and is not deterministic.

2. The mean of the random errors are zero.

3. The random errors have constant standard deviation/variance.

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

52

4. The random errors follow a normal distribution.

5. The data must be sampled randomly from the underlying process.

6. The explanatory variables (code alignment parameters of Section 2) are observed

without error.

One of the most important assumptions in prediction is assumption #4, that the random errors

follow a normal distribution. The assumption that the errors have zero mean and constant

variance also is important in the formulation of regression models. The mathematical theory

for inferences using the normal distribution assumption of error terms is well developed. In

practice, the normal distribution often describes the actual distribution of random errors

reasonably well. There are a variety of statistical tests to check for normality of errors. If this

assumption is violated, then the inferences made about the process based on this assumption

may be incorrect.

3.2.2. Linear Least Squares Regression

The most widely-used method to estimate parameters in a model is to use a linear least

squares regression. In a regression model with one dependent variable y (that we assume for

simplicity is a single scalar) and multiple independent variables , 1, ,jx j k= … , the linear

model is formulated as:

 0 1 1 ... k ky x xβ β β ε= + + + + (11)

where ε represents random error associated with the model (some textbooks emphasize that

this error is observational error; others state that all unexplained variation in y caused by

important by unincluded variables or by unexplainable random phenomena is included in the

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

53

random error term). Usually, the random error is assumed to be normally distributed with

mean 0 and variance 2σ , written ()2~ 0,Nε σ .

Least squares regression minimizes the sum of squares of the deviations of the y-values

about their predicted values for all the data points. Thus, for n data points, the Sum of

Squares of the Errors (SSE) is:

 2
110

1
)]...([kk

n

i
i xxySSE βββ ++−=∑

=

 (12)

The quantities kβββ ˆ,..,ˆ,ˆ
10 that minimize the SSE are called the least squares estimates of the

parameters kβββ ,..,, 10 and the resulting prediction equation is:

 0 1 1
ˆ ˆ ˆ... k ky x xβ β β ε= + + + + (13)

where the “hat” notation can be read as “statistical estimator of.” Thus, ŷ is the least squares

estimator of the mean of y , ()E y , and kβββ ˆ,..,ˆ,ˆ
10 are estimators of the parameters

kβββ ,..,, 10 .

In the notation of Section 2, a given set of data points iy are benchmark data, and the

regression equation (11) is the numerical model, or code. Thus, linear regression is a

calibration formulation where we demand () ()i i i iB p y M p ε= = +
G G . The alignment parameters

(“explanatory variables”) are (), 1 , ,i i
A i kp x x=
G … , while the remaining parameters are

()0 1, , ,N kp β β β=
G … . (What could be a very complex family of “numerical” parameters for a

code are simply the coefficients in the linear model in this case.) Finally, calibration is

accomplished by minimizing the SSE, which means if:

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

54

2

0 1 1

1,...
1

[(), ()] ...

({ [(), ()]}) [(), ()]

i i
i i i k k

n

i i i n i i
i

M p B p y x x

O M p B p M p B p

β β β

=
=

⎡ ⎤≡ − + + +⎣ ⎦

≡∑

G G

G G G G
CAL

CAL CAL CAL

D

D D

then

0 1 0 1

1,..., ,.., , ,..,
min min ({ [(), ()]})

k k
i i i nSSE O M p B p

β β β β β β ==
G G

CAL CALD (14)

which is in the form of equation (7). The minimum occurs at ()0 1
ˆ ˆ ˆ, ,.., kβ β β .

Regression models calibrated in this fashion are used for prediction in a variety of ways

without explicit characterization of model uncertainty. Some of the most common prediction

tasks are to:

1. Predict a response at a particular set of input variables different than the benchmark

data. The input variables are also called predictor, independent, or explanatory

variables. This is done by substituting a particular value of xG , say 'xG , into the

regression formula with the fitted coefficients: 'ˆ...'ˆˆ'ˆ 110 kk xxy βββ ++= . This is

interpreted as: the mean or expected response at input x’ is given by 'ŷ .

2. Describe the confidence interval (CI) for the mean response at a particular set of input

values (given in step 1). The confidence interval range (e.g., a 95% CI) is the range in

which the estimated mean response for a set of predictor values is expected to fall.

This interval is defined by lower and upper limits, calculated from the confidence

level and the standard error of the fits. The CI is around the 'ŷ , and is interpreted as:

the CI will contain the true mean at input 'xG a certain percentage of time (e.g., 95%

for a 95% CI).

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

55

3. Describe the prediction interval (PI) at a particular set of input values. The prediction

interval is the range in which the predicted response for a new observation is expected

to fall in a statistical sense. The PI differs from the CI in that the prediction interval is

an interval in which a particular response for input 'xG ’ is expected to fall, and the CI is

the interval in which the mean response for input 'xG is expected to fall. The PI is

defined by lower and upper limits, which are calculated from the confidence level and

the standard error of the prediction. The prediction interval is always wider than the

confidence interval because of the added uncertainty involved in predicting a single

response versus the mean response.

The formulas used to calculate the CI and the PI are found in most statistical texts [45].

An example of confidence vs. prediction intervals for a linear regression model is shown

in Figure 4. There, the discrete dots are (calibration) benchmarks, the black solid line is the

linear regression resulting from the calibration problem (Eq. 14), the dashed red lines are 95%

CI’s, and the dashed green lines are 95% PI’s. Note that these intervals are around individual

input points. Methods such as Scheffé or Bonferroni confidence intervals give CI estimates

around the regression coefficients [45].

Linear regression is used extensively in practice because many processes are well-

described by linear models, or at least well-approximated by a linear model over a constrained

domain of Ax p=
G G . The statistical theory associated with linear regression is well-understood

and allows for construction of different types of easily-interpretable statistical intervals for

predictions, calibrations, and optimizations. These statistical intervals can then be used to give

clear answers to scientific and engineering questions.

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

56

The main disadvantages of linear least squares are limitations in the shapes that linear

models can assume over broader ranges of ApG , and sensitivity to outliers. Additionally, the

method of least squares is very sensitive to the presence of unusual benchmark data points in

the collection used to calibrate a model. One or two outliers can sometimes seriously skew the

results of a least squares analysis.

3.2.3. Nonlinear Least Squares Regression

Nonlinear least squares regression extends linear least squares regression for use with a

much larger and more general class of functions. Almost any function that can be written in

closed form can be incorporated in a nonlinear regression model [46]. Unlike linear

regression, there are very few limitations on the way parameters can be used in the functional

part of a nonlinear regression model. The way in which the unknown parameters in the

function are estimated, however, is conceptually the same as it is in linear least squares

regression.

In nonlinear regression, the nonlinear model between the response y and the predictor xG

is given as: (), Ny f x p ε= +
G G , whereε is the random error term and NpG is the auxiliary

parameter vector as in Section 2. For example, one could have a benchmark data set,

}...1),,{(niyx ii =
G where

i

xp
Nii

N

ippxfy

pppxx

ε)]e-[1),(

),(,
2

1

21

+==

==
G

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

57

The goal of nonlinear regression is then to find the optimal values of NpG to minimize the

function 2

1

)),((Ni

n

i
i pxfy G
−∑

=

. This problem can be cast in the same form as equation (14) and

so is also compatible with our discussion in Section 2.

The value of NpG that minimizes the sum of squares is ˆ Np , and has an estimated

covariance matrix given by: 2 1ˆ() (')Cov p s W W −= , where W is an n k× (in general) matrix

of first derivatives of the assumed nonlinear model (), Nf x pG G evaluated at ˆ Np , and

()2 2/ estimator of s SSE n k σ= − = . In terms of prediction, equations similar to linear

regression are used to calibrate the nonlinear model with the benchmark data. If one is

predicting the mean response at a particular value of 0xG not in the benchmark data, confidence

intervals and prediction intervals analogous to those mentioned for linear regression can be

developed.

Nonlinear regression is formally similar to linear regression in the sense of calibration

presented in Section 2 in that the resulting abstract formulation is still iii pMpB ε+=)()(GG ,

with (,)Np x p=
G G and NpG determined through a calibration optimization problem. The main

differences are that)(ipM G is now a nonlinear function (it could be as complex as a code, of

course), and the auxiliary parameters NpG no longer enter the formulation as coefficients of a

linear equation, as in the case of linear regression. In nonlinear regression, the coefficients

are usually more closely tied to a physical quantity than in linear regression, as a matter of

conventional practice. Nonlinear regression requires an optimization algorithm to find the

value of NpG that minimizes the sum of squares analogous to equation (14), which rapidly

increases the technical difficulty of the calibration procedure. Specialized nonlinear least

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

58

squares optimization algorithms have been designed to exploit the special structure of a sum

of the squares objective function and solve these complicated optimization problems.

Nonparametric regression techniques, such as moving least squares, are also used as statistical

models for data. In some cases, nonparametric methods may provide better local “fits” of the

data than nonlinear regression methods. However, nonparametric regression methods are

more localized methods (similar to radial basis functions), so we do not see them having the

same role in calibration as a global regression fit.

3.3. Calibration Under Uncertainty

The regression methods outlined above are used in calibrating parameters of models,

taking into account uncertainty in the calibration benchmark data but assuming no uncertainty

in the model itself. However, model uncertainty also influences the credibility of predictions

based on the calibration. The Bayesian statistics community has developed formal statistical

methods that address model uncertainty. This is called Calibration under Uncertainty. One

important approach is that of Kennedy and O’Hagan [47], hereafter referred to as KOH. They

formulate a model for calibration data that includes an experimental error term (similar to the

random error term in linear regression) and a model discrepancy term, which quantifies the

deviation of the model from a chosen set of benchmarks. Model discrepancy is represented

by a Gaussian process (think of it as a random field; this representation is more sophisticated

than a constant bias term). KOH then use a Bayesian approach to update the statistical

parameters associated with the discrepancy term and with the model parameters. The purpose

of updating is to reduce uncertainty in the parameters through the application of additional

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

59

information. Reduced uncertainty is presumed to increase the predictive content of the

calibration. Examples of application of the KOH approach are given in [48,49].

Below, we give a very brief outline of the key points in the KOH approach. The

interested reader should peruse the references.

3.3.1. Kennedy and O’Hagan formulation

The KOH approach uses the idea of Gaussian processes (GP). Gaussian Process models

are used in response surface modeling, especially response surfaces which “emulate”

computer codes. Gaussian processes have also been used in conjunction with Bayesian

analysis for regression problems and for calibration, and for estimation and prediction in

geostatistics and similar spatial statistics applications [50].

A Gaussian process is defined as follows [51]: A stochastic process is a collection of

random variables (){ }Y x x X∈
G G indexed by a set X (in most cases, X is dR , where d is the

number of model input parameters). A Gaussian process is a stochastic process for which any

finite set of Y-variables has a joint multivariate Gaussian distribution. Note that the random

variables Y are indexed by xG : a set such as () (){ }1 , , kY x Y xG G… has a joint Gaussian

probability distribution. A GP is fully specified by its mean function ()xµ G and its covariance

function (),C x x′G G . The mean function may be a polynomial, a sum of weighted basis

functions, etc. The covariance function is often defined as an exponential function of the

form: () ()22
0

1

, exp
d

u u u
u

C x x x xν ρ
=

⎧ ⎫′ ′= − −⎨ ⎬
⎩ ⎭
∑G G G G , to reflect the fact that nearby input points have

highly correlated outputs. Prediction using GP models involves matrix algebra on the inverse

of the covariance matrix of all the data points.

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

60

KOH’s approach also relies on the idea of Bayesian updating. The basic concept in

Bayesian analysis is to combine “prior” information (in terms of a distribution on a parameter,

where the distribution itself is characterized by “hyperparameters”) and actual data (through a

likelihood function) to obtain a “posterior” estimate of various parameters. Combining

Gaussian processes and a Bayesian approach, one places a prior probability distribution over

possible mean and covariance functions of the GP and generates a posterior distribution on

the GP parameters based on the data. One can then sample from the posterior distribution to

obtain various estimates of the GP prediction. We do not address the issue of Bayesian

analysis/Bayesian updating in this paper due to space limitations. Gelman, Carlin, Stern and

Rubin [52], and Press [53] provide primers on Bayesian topics. One way to generate a

posterior distribution is through Markov Chain Monte Carlo sampling (MCMC). Specific

references for MCMC sampling include [54,55].

With this very brief background in Gaussian process models and Bayesian analysis, we

proceed to the KOH model for calibration under uncertainty. We consider a computer model

(a computer code in the language of Section 2) denoted (),x tη
GG , where ()1, , qx x x=

G … plays

the role of the previously discussed alignment parameter vector ApG and the vector

()1, , rt t t=
G

… , the calibration parameters in the language of KOH, plays the role of the

auxiliary parameters NpG . KOH assume that these calibration parameters take fixed but

unknown “true” values ()1, , rθ θ θ=
G

… differentiated from the fixed values t
G

which are set as

inputs when evaluating the model. The model (),x tη
GG has uncertainty, with the assumed

“true” value of the real physical process simulated by the model for the input xG denoted by

()xζ G . The outputs from N runs of the computer model are then given by

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

61

(){ }, , 1, ,i i iy x t i Nη= =
GG … . Observed benchmark data for the physical process of interest may

consist of n N< data points, which we denote as ()1, , nz z z=G … (we assume for simplicity that

the benchmark data are scalars). In KOH’s formulation, they represent the relationship

between the observations, the true process, and the computer model output by the

fundamental equation:

 () () (),i i i i i i iz x e x t x eζ ρη δ= + = + +
GG G G (15)

where ie is the observation error (uncertainty in the benchmark data) for the ith observation,

ρ is introduced as an unknown regression parameter, and ()xδ G is the model discrepancy or

model inadequacy function and is treated as independent of the code output (),x tη
GG . The

model discrepancy term is an empirical description of model inadequacies and may include

factors such as code bugs, poor numerical accuracy due to insufficient grid resolution, poor

alignment with respect to a benchmark, incomplete physics, and so on. Of particular concern

to us in this paper, poor comparison with benchmarks is a direct measure of an underlying

model (in our case, code) discrepancy. The KOH model discrepancy is a statistical construct

that has been primarily applied for relatively simple computational applications compared to

our CS&E concerns.

A few comments about this approach are in order. The KOH formalism is a highly

parameterized method for incorporating model uncertainty in classical statistical calibration

procedures, with both the code output (),x tη
GG and ()xδ G represented as Gaussian processes to

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

62

allow inference. The error term ie should include both residual variability as well as

observation error, but KOH do not strictly address residual variability in the benchmark data

currently. They assume that ie is normally distributed as ()0,N λ (this assumption rules out

systematic errors). Assumption of a constant value of the introduced regression parameter ρ

implies that the underlying benchmark process ()xζ G is stationary, which is unrealistic in

many applications.

Restating several hints made above, the KOH model given in (15) can be mapped to the

formalism defined in Section 2 as follows: The code parameter vector decomposition has ApG

corresponding to xG , and NpG corresponding to θ
G

, with specific values alternatively labeled by

t
G

. The benchmarks are given by zG , that is ii zpB =)(G . The code output

() (),A NM p M p p≡
G G G is denoted by the KOH “model” (),x tη

GG . The distinction between the

KOH method and the traditional regression approach summarized above is the addition of the

model discrepancy term in (15). Thus, in terms of the discussion of Section 2, in the KOH

approach, we have the benchmark comparison process formalized as:

() ()()i i i iB p M p M p e= + ∆ +
G G G . The model discrepancy term ()iM p∆

G in the KOH approach is

a function only of inputs (alignment parameters) xG . In model verification and validation, an

important goal is then to quantify the model discrepancy term. In the KOH approach, the next

step taken is to use the benchmark data to update assumed prior distributions on parameters in

the model and model discrepancy terms with Bayesian methods. This type of calibration is not

an optimization in the sense of minimizing the SSE (as in equation (14)) or an equivalent

metric. Rather, the KOH calibration is an updated picture (a posterior distribution) of the

parameter values governing the model term and model discrepancy term based on Bayesian

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

63

principles which is aimed at reducing uncertainty in these parameters. This is understood to

improve the quality of predictions made with the model, not through some kind of tuning of

model parameters through minimization of a measure of discrepancy with the benchmark

data, but through more refined quantification of uncertainty in the model parameters. Clearly,

some sense of when it is important to perform the latter rather than the former process on the

parameters should serve to drive this methodology.

The methods for attacking the generation of posterior distributions for the parameters in

this formalism are complicated. We direct the interested reader to the original work of KOH,

as well as a detailed summary in Swiler and Trucano [56].

3.3.2. Comments on Implementation Issues

We are presently investigating the feasibility of using a GP formulation such as provided

by KOH as a practical calibration method for engineering design problems. Campbell [57]

has also reviewed KOH’s work with an emphasis on implementation. She concluded that

information about model quality gained through the formulation of a model discrepancy term

could be useful, but that a user should be careful in situations of limited observational data

and “avoid exaggerating the contribution of the Bayesian updating process.” [57, p. 2]

As an exercise, we developed a GP emulator for the Rosenbrock function (Swiler and

Trucano, 2004), a test function used in the optimization community. We observed that as we

added data points, the covariance matrix (),C x x′G G underlying the GP characterization became

extremely ill-conditioned, and the inverse covariance matrix needed for prediction with

posterior updates could not be generated (the ratio of largest and smallest eigenvalues in the

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

64

covariance matrix was 1016!) Note that this behavior intuitively seems wrong: more data

should always be better in terms of creating a response model or performing prediction. But

in GP models, if points are close together in the input space, the resulting covariance matrix

can have rows that are nearly linearly dependent, and the inversion falls apart. There are

methods to address this (e.g., singular value decomposition), but our experience stands as a

caution. Ultimately, we believe this difficulty is algorithmic, rather than conceptual.

We offer one further caution about these methods. Thus far, we have found that it is

difficult to separate the model discrepancy and the observational error term, ie , unless one has

very good information about measurement error in the benchmark data. Also, the KOH

framework requires that the user have reasonably good prior estimates for the parameters of

both the model emulator GP and the model discrepancy GP. In practice, this is not always the

case. Finally, there is a software implementation issue. Most public domain software (e.g.,

Netlab, Flexible Bayes Modeling (FBM) software), allows one to create a GP and update the

hyperparameters governing the GP, usually with a MCMC method. However, the ability to

perform simultaneous updating on two GP models coupled by equation (15) to obtain the

parameters governing both the η and δ terms is not generally available. Finally, MCMC

methods which are commonly used for these types of problems require the user to have a fair

amount of statistical knowledge about the form of the posterior (in terms of a “proposal

distribution” used to generate the Markov chain), certainly in order to make evaluation more

efficient. MCMC methods require a lot of tuning parameters, such as step sizes and leaping

parameters, and it is not trivial to tune the MCMC to obtain a recommended acceptance rate

of 25%, for example. And testing convergence of MCMC methods is difficult. There are

some convergence diagnostics available [54] but they test if the chain has “settled” out and do

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

65

not really test if the Markov chain has converged to the “true” underlying posterior

distribution. We have tested cases where two different chains produced substantially

different posterior distributions. It appears to us that tuning MCMC performance and

improving convergence diagnostics is a research question of interest.

3.3.3. Conclusions

Our interest in the work of KOH is dominated by the potential for enhanced prediction

resulting from CUU methods and on the connection of these methods to V&V through the

model discrepancy. Overall, our conclusions to date from this work in progress are the

following: Gaussian process models are powerful surrogates or response surface “emulators”

for computationally expensive codes. Implementing them requires some knowledge about the

data set used and what data will have to be discarded to make the covariance matrix well-

conditioned; or additional formulations are needed that are robust to poor covariance

conditioning. KOH’s formulation of “observation = model + discrepancy + error” is very

important because it explicitly separates the model discrepancy term from the model itself.

The Gaussian process assumption of the model discrepancy needs further examination (and

this might result from focusing V&V results within a CUU framework), but in general, GP

models are extremely flexible at representing a wide variety of functional relationships. The

additional assumption that these GP models are governed by parameters that can be updated

using Bayesian methods adds a great deal of computational complexity to the picture. The

formulation of the joint posterior is difficult. Even if one does not try for analytic solutions

but uses MCMC methods, there are many issues to resolve around numerical performance,

such as convergence of the MCMC to the correct underlying posterior and determination of

tuning parameters, etc.

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

66

At this point, we see some interesting paths for further investigation. One is using KOH’s

formulation expressed in (15) but calculating the parameters by Maximum Likelihood

Estimation (MLE) methods instead of Bayesian updating. Dennis Cox has pursued this

approach [58] and it removes the difficulties associated with posterior generation (such as via

MCMC). Another is to look at the first term in equation (15), the model emulation term, and

replace it with another type of surrogate, perhaps a lower fidelity or reduced order model.

This has the advantage of “simplifying” the estimation in that one is solely focused on

calculating the parameters for the GP model, but it may introduce limitations in terms of the

capability to predict.

A final thought about the KOH method with respect to calibration is worth emphasizing.

The updating of parameters governing a Gaussian process model of the code and/or a

Gaussian process model of the model error does provide new, “calibrated” estimates of the

hyperparameters of the parameter distributions. However, it does not directly “optimize”

these parameters in the sense that regression does: it merely characterizes them. In many

cases, the data may not change the parameters significantly in the Bayesian updating process.

The method based on learning theory in the following section also characterizes and tries to

provide a good estimate of the model discrepancy term but does not directly “optimize”

parameters; rather it is an adaptive method of understanding the discrepancy term.

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

67

3.4. Extension of the Context of Calibration – Learning Theory

3.4.1. Introduction

We have suggested that the complexity of calibration increases (significantly!) as we

incorporate formal measures of model uncertainty into the procedures. In this section we

would like to further abstract this issue from a somewhat different perspective, that of the

mathematics of generalization, also called supervised learning [59].

We have observed that the calibration problem, defined in Section 2 as minimization of a

complex functional such as
{ }

() (){ }()
,

, , ,, 1, ,
min , , , 1,...,

N i
A i N i A ip i n

O M p p B p i n
= ⊂

⎡ ⎤ =⎣ ⎦G …

G G G
NP

CAL CALD

should include a formalization of model uncertainty, for example as in the model discrepancy

term, which we here write as ()M p∆
G , discussed in Section 3.3. We have also claimed

without detailed analysis that the evaluative nature of V&V manifested in the information

gathered from benchmark comparisons [],⋅ ⋅VERD and [],⋅ ⋅VALD contributes quantitative

information about the code (model in KOH terms) discrepancy ()M p∆
G .

One way to conceptually integrate these procedures can be summarized as follows. As we

stated earlier, the code ()M pG defines a mapping (function) of the input parameter space to the

output space:

 () :M p ≡ × →
G

A NP P P O

The code discrepancy is also such a mapping:

 () :M p∆ ≡ × →
G

A NP P P O

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

68

(Note that we no longer assume the restriction of KOH that ()M p∆
G only depends on ApG .)

For a code that is credible for a specific application associated with a specific choice of pG we

want ()M p∆
G to be small. The decision to calibrate is simply to force this to happen on a set

of benchmarks (which we now write in a form to be compatible with learning theory notation)

(){ }, ,, , 1, ,A i A ip B p i n≡ =
G G …T through adjustment of appropriate part of pG . V&V should

guide this process through a quantification of ()M p∆
G specifically on the set T and through

correlation of the features detected in V&V with details of the model structure, including

algorithm design, software implementation and physics conceptual models. This evaluation

should include quantification of the uncertainty in T and ()M pG .

From this perspective, there is then some hope that all of this knowledge, coupled with

statistical calibration procedures, will provide a prediction of ()M p∆
G off of the benchmark

set T that we have some quantitative reason to believe is credibly small. In the language of

supervised learning, ()M p∆
G is a target relationship between P and O , and T is a training

set. Via benchmark tasks and the associated inference, we learn about ()M p∆
G from its

restriction to the training set, and use learning methods to extend this relationship beyond the

training set. In the ideal, from a perfectly constructed training set T and the right learning

methods, we can extend ()M p∆
G to the application domain. If ()M p∆

G is then sufficiently

small on the application domain within this context, we have a formalization of the credibility

of applying ()M pG for prediction, i.e. to values of pG different from the training set. This

formalization will be probabilistic since the learning framework must be probabilistic

(although this could be subjective, that is not using a frequency-based probability

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

69

interpretation). We emphasize that calibration is not really fundamental to the learning theory

generalization of ()M p∆
G from a benchmark training set. However, we are allowing for the

possibility that ()M p∆
G may not be small enough for the intended application on the training

set and that an attempt (calibration) will be made to reduce it. Note that neither the KOH

Bayesian method nor the learning theory approach calibrates parameters directly in terms of

minimizing the SSE or similar objective functions of the parameters. Rather, these methods

improve the characterization of the model discrepancy term ()M p∆
G . In the KOH approach,

prior distributions on parameters are assumed, and then calibration is an updated picture (a

posterior distribution) of these parameter values governing the model term and model

discrepancy term based on Bayesian principles. In learning theory, something about

()M p∆
G is learned from the training set, and this relationship is then extended to an

application domain.

We now make some comments about this view of V&V and calibration:

1. Because of the role of uncertainty in all aspects of V&V, the representation of these

problems in a learning theory context stated above is rather natural from a

philosophical perspective.

2. Learning is a readily recognizable feature of the human interaction with complex

CS&E codes, as any experienced practitioner will recognize. In particular, this

learning is expressed in the understanding of variation and choice of the code

parameters most likely to be used in formal calibrations. Learning is more than

calibration in the sense that experience provides subjective or otherwise projection of

the likely code discrepancy that arises when the code is applied away from the

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

70

experience base of benchmark (or training) data. This empirical experience seems to

us to be worth understanding more formally in the context of V&V, as well as in

calibration under uncertainty.

3. One of the recognized mathematical problems of learning theory 60,61] is the nature

of the behavior of the choice of generalization of ()M p∆
G (restricting to our context),

also called the hypothesis, as the training set increases. Any understanding of this

depends on the nature of the training set as well as technical restrictions on the space

that ()M p∆
G may be chosen from. When benchmarks in the training set are validation

benchmarks, this problem expresses concisely one of the most important problems in

experimental validation – what is the value of performing new validation experiments?

These authors also note that for a fixed training set there is an optimal complexity of

the space that ()M p∆
G may be chosen from. This hints at the possibility that

mathematical learning theory can provide some guidance as to how to choose a

()M p∆
G that is most usefully generalizable beyond the specified training (benchmark)

data.

4. One more time we emphasize our original decomposition of the parameter vector that

the computational model depends upon. The goal is generalization of ()M p∆
G , that is

interpolation or extrapolation to other values of ApG , not simply reducing the size of

()M p∆
G on the specified training set T (the set of benchmarks). In this way we make

visible the intuitive fact that generalization is important for credibility, not simply

point accuracy restricted to the training set. Calibration in isolation from V&V is

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

71

satisfied with the narrow goal of only making ()M p∆
G small. Developing methods for

understanding generalization independent of calibration is important, and this is one of

the reasons to study calibration under uncertainty.

In principle, a learning theory perspective on V&V and calibration can be readily adapted

to direct application of supervised learning to the code ()M pG . In this case, ()M p∆
G then acts

in some sense as intermediate information that helps to guide the generalization of ()M pG by

means of calibration to reduce ()M p∆
G on the training set. Our belief is that for something as

complex as a code, it is better to restrict attention in the learning theory context to the

discrepancy ()M p∆
G . Certainly, we should separate the problem of learning about

()M p∆
G from the problem of trying to minimize it as a mechanism for confidently

generalizing ()M pG . For one thing, the more likely it is that ()M pG is credible, in other

words, that it is generalizable off the training set, then the more likely it is that ()M p∆
G will

have a simple structure, for example to be relatively smooth and flat as a function of ApG . In

this case, it is believable that training will provide a useful generalization of ()M p∆
G .

Obviously, this argument requires significant elaboration; we are currently engaged in

research to explore these issues in greater detail. Some further elements of a learning theory

perspective are briefly summarized below (see also [62]).

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

72

3.4.2. Vector of learning parameters

While there are many types of learning, the focus herein is on parameter learning. By this

we mean that there is a vector of parameters LpG in the code with components that would

include a calibration vector (e.g., the vector θ used in the KOH approach) as well as those

components of the alignment parameter vector ApG that are not precisely known. To be

compatible with the notation of this paper, we can assume that the components of LpG lie in

the vector NpG introduced in Section 2, thus implying that ill-defined components of ApG (for

whatever reason!) are removed from the alignment process and entered as components in the

vector that could be calibrated. We thus assume that the components of LpG cannot therefore

be assigned in a straightforward manner by alignment or user judgment. This parameter

vector would be learned as part of a benchmark process through the application of machine

learning techniques. Some examples of the type of parameters that are found in LpG are:

• Unobservable parameters, such as unmeasured quantities in a validation

experiment, that appear in the code.

• Component-to-component interaction parameters, such as effective parameters in a

constitutive model implemented in the code.

• Model selection parameters, for example “multipliers” used in a code to adjust the

relative influence of particular model components in a code.

• Numerical parameters NpG .

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

73

3.4.3. Types of computational learning

Learning theory is broad and tends to be highly application specific. An attempt is made

here to provide a brief overview of the main goals of learning theory in the context of

parameter learning so as to contrast the above discussion that focused on statistical

calibration. We choose to guide this discussion through the description of problems of

particular interest in computational learning.

Statistical interpolation. The abstract goal here is to determine a mathematical manifold

(essentially a set of high-dimensional surfaces), expressed as a function of LpG , using

statistical tools. The KOH CUU method is an example of a method which addresses this

learning goal; many other methods can be found in texts such as that by Hastie, Tibshirani and

Friedman [63]. These methods work by optimizing the interpolation result with respect to a

statistical measure of fit, such as likelihood. Bayesian extensions are also possible, yielding

probability densities for the parameter vector. The idea of statistical interpolation is to make

best use of the information contained in the training data set to guide optimal selection of LpG

for given choices of ApG that differ from the training set and can be viewed as interpolating or

extrapolating the training set. Subject matter expertise (domain expertise in the language of

learning theory) is needed to define the parameter bounds and to assist in statistical reduction

of the parameter space, but the interaction between the domain expert and the statistical tools

is relatively weak in this problem. In other words, the emphasis is likely on the statistical

properties of the training data set, not domain knowledge.

Elicitation of domain knowledge. The learning goal here is to expand the information

beyond the training data set by using domain experts (see [64-66]). The learning constraint,

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

74

as mentioned earlier, is that the results of this interaction should be restricted to the parameter

vector LpG and should not, for instance, require modifications to complex code. Hence, the

type of domain experts needed here are not necessarily those who write the code, but those

who are experts in using the code. Except for problems involving simple or well-understood

systems, it can be assumed that such experts will be available.

Integrated Learning. Statistical interpolation and domain knowledge can be combined in

an integrated approach: this is called integrated learning. The goal is to be able to elicit

knowledge from domain experts and use this knowledge in a statistically consistent manner

with the training data. What is critical here is a close interaction between the domain expert

and the training data set to allow for insightful interpretation and generalization by the expert

in the context of the data. This immediately precludes the use of legacy methods such as

case-based reasoning and knowledge-based systems, because they are developed for non-

interactive environments where the experts deposits some form of knowledge into a

computational framework and this knowledge is subsequently applied to a modeling problem.

This also requires substantial extensions and generalizations of the domain expertise

interaction used in statistical learning, as described above. Further details of this approach

have been summarized in Igusa & Trucano. Other integrated methods, including those using

agents, are currently being explored.

3.4.4. Parameter reduction and metrics

High-dimensional parameter problems. Statistical interpolation can operate directly in

high-dimensional spaces if the training data set is sufficiently large. Since the size of such

sufficiently large training sets grows exponentially with parameter dimension, practical

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

75

limitations may require some reduced form of statistical interpolation. There is a large

collection of statistical reduction techniques that are available, nearly all of which require

interaction with domain expertise. For instance, the simplest reduction techniques (such as

ANOVA [67]) eliminate parameters from the interpolation scheme through sensitivity

analysis, making the interpolation invariant with respect to these parameters. Domain

expertise is needed to indicate whether the system is truly insensitive with respect the

eliminated parameters.

Integrated learning couples domain expertise more closely to the parameter reduction

process. The essential idea here is to replace a high-dimensional, low-level parameter vector

with a relatively low-dimensional, high-level feature vector. The components of the feature

vector are simple functions of the original parameter vector that are defined through the

interaction of the domain expert with the computational learning method (through the

application of projection pursuit regression, for example; see [68,63]). This is in contrast to

statistical reduction where a low-dimensional vector is obtained in terms of the original

parameter vector using generic functions (e.g., sample averages and variances), subsets of

components, or linear combinations (e.g., principal components).

Complex observational metrics. In some simple systems, benchmark data sets

{ }: 1,...,ijy j m= , say for experiments i=1,...,n, each containing m data values may be

characterized by small m and a uniformity of data types (including experimental repeats). In

such cases, the benchmark comparisons [],⋅ ⋅VERD , [],⋅ ⋅VALD and [],⋅ ⋅CALD could be defined

by the null statistical form, namely, weighted least squares similar to the discussion in Section

3.2:

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

76

 { } (){ } () 2

1
, , 1, ,

m
M M

ij ij j ij ij
i

y y w y y j m
=

⎡ ⎤ ⎡ ⎤= − =⎣ ⎦⎣ ⎦ ∑ …D (16)

where (),ij A ijy y p=
G , (),

M
ij A ijy M p=

G . As the data sets increase in size (e.g., time-dependent

data), then the above function can become dominated by irreducible noise. (An example is

where the data y is given by the displacement response of a simple linear oscillator at discrete

time intervals along with the forcing function, and the measurements of the forcing function

are corrupted by a small amount of white noise. If the model M is of a linear oscillator

subjected to the measured forcing function, then the null statistical metric would provide poor

resolution, particularly for large time durations.) With limited interaction with a domain

expert, it is possible to improve the comparison, using a reduced form of the data. For time-

dependent data, for instance, some type of reduced frequency representation based on Fourier

series or wavelets may be appropriate.

Extrapolation. It may first appear that statistical learning can be used when interpolating

and integrated learning would be required when extrapolating beyond a training set. There

are several difficulties with this belief, however. First, for high-dimensional parameter

problems, unless the training data set is sufficiently large, a reduction of the parameter

dimension is needed. This process in itself, as stated above, may require an integrated

learning approach to define the appropriate reduced parameter space.

Second, we emphasize the definition of extrapolation is not obvious, particularly when

one examines the training data in the broader context of the system under study. If the data

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

77

points are examined from a purely statistical point of view, then extrapolation usually refers to

a prediction at a point that lies outside of some region R containing the training data set.

There are methods which use ellipsoids or other forms to specify R ; one minimalist approach

is to use a region slightly larger than the convex hull of the training data set. There are some

difficulties though: even the convex hull may contain sub-regions that cannot be considered

for interpolation. Obvious examples are cases where there are large sub-regions (high-

dimensional holes) without training data. Less obvious examples are those where the location

of the parameter point has an important impact on system configuration or performance that

cannot be directly inferred from the training data (the presence of unexpected phase

transitions lying between the elements of a set of equation of state data, for example). In

these latter examples, the training data must be interpreted as more than simply a collection of

points in a mathematically structured parameter space.

An important example where apparent interpolation must be analyzed as extrapolation is

in complex systems where training data is available only for system components or

subsystems, and not for the complete system. For example, in a two-component system,

where the learning vector is then naturally partitioned as () ()()1 2,L L Lp p p=
G G G (in other words,

where the parameter space as a direct sum of two components), the training data set would

have parameter values of the form ()()1 ,0LpG or ()()20, LpG . This is illustrated in Figure 6 for the

case where ()1
LpG and ()2

LpG are one-dimensional. While the convex hull of this data set would

contain intermediate points of the form () ()()1 2,L Lp pG G as indicated in the figure, in general the

response of the system cannot be modeled by interpolating responses of the training data set.

The difficulty here is in the interactions between the systems which are not present, and hence

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

78

are not modeled in the training data set. While the computational code may include one or

more models for this interaction, the training data set does not serve as a benchmark for such

interaction models. Hence, the apparent interpolation is actually extrapolation, where zero-

interaction data is used to predict system behavior with interaction.

The null statistical model is to simply proceed with statistical interpolation, treating the

training data such as those in Figure 5 as points in parameter space. The alternate to this null

model is to use domain expertise in conjunction with the computational model to estimate the

appropriate types and levels of interaction. When the interactions are complex, a profound

level of domain expertise may be needed. The integration of this expertise in a computational

learning framework is more difficult than that required in the high-dimensional parameter and

comparison problems discussed above.

In summary, computational learning may be used to determine parameter values in a

calibration sense, to reduce high-dimensional parameter problems to reduced forms, to

quantify and improve comparisons, and for extrapolation.

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

79

4. SENSITIVITY ANALYSIS

The role of sensitivity analysis in the processes of verification, validation and calibration

is clear. This has been the subject of many previous presentations, for example [69-81]. In all

specific instances of the verification, validation and calibration formalism suggested here,

understanding the sensitivity of the associated comparisons and credibility quantifications to

the individual components in the code parameterizations is fundamental. Parameter sensitivity

is also important in guiding our studied reaction to model uncertainty. Parsimony, the

reduction of the size of the parameter vector, is guided by sensitivity analysis and remains an

important model selection principle. That is, sensitivity analysis is required for understanding

the extent to which a model is complicated enough to be credible but not too complicated.

Here, we limit our discussion to two brief comments about the role of sensitivity analysis

in V&V that go beyond standard statements about its quantitative importance as found in the

above references. First, sensitivity analysis directly contributes to the definition of planned

validation activities that culminate in the definition and application of validation benchmarks

as defined above. This centers on the use of a Phenomenology Identification and Ranking

Table (PIRT) in defining the key requirements of planned validation tasks [82]. The origin of

this key idea lies in the application of high-consequence modeling for nuclear reactor safety

studies [83], culminating in the development of the Code Scaling, Applicability and

Uncertainty (CSAU) methodology. As applied to V&V, sensitivity analysis underlies the

determination of the importance, hence priorities, of code elements that must be subjected to

V&V in particular studies. The sensitivity analysis may be qualitative and subjective or

quantitative and objective for the first specification of a PIRT for V&V. In either case, it is

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

80

expected that the results of V&V tasks performed in response to the PIRT will create new

understanding of the PIRT information and lead to future modifications. This reflects our

belief that validation is an ongoing process that can be and should be subject to

improvements. Sensitivity analysis supports this concept through iterative improvement of our

quantitative understanding of what is important for validation and how priorities should be

established at given points in time. IN a resource constrained world, this is not only desirable

but required.

Second, we stress that from the perspective of prediction, calculation of parametric

uncertainties of ()M pG , either local or global, suggests the need to predict these sensitivities

off the chosen benchmark sets. Ideally, then, we also seek sensitivity benchmarks as part of

V&V. In other words, we would like to add sensitivity comparisons, [],⋅ ⋅SEND , to the catalog

of comparisons presented in Section 2; this quantity measures the difference between a

measure of parameter sensitivity for calculations (),p A NS M p p⎡ ⎤⎣ ⎦G
G G and for benchmarks

()p AS B p⎡ ⎤⎣ ⎦G
G . (As one possibility, []pS ⋅G could be scaled derivatives of selected calculation or

benchmark outputs with respect to the parameter components. It could also be derivable from

statistical methods. The referenced work at the beginning of this section illustrates the

possibilities.) For example, to apply this concept in validation would require that not only

were experimental benchmark data for the benchmark ()AB pG be acquired but that

experimental sensitivity benchmark data be acquired. The degree of agreement with

benchmark sensitivity data should then further contribute to the credibility associated with the

code through a sensitivity credibility function [](),⋅ ⋅red
SENC SEND . Given that such a benchmark

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

81

task can be performed, the overall picture of credibility of the code is given by the

accumulated information [](),⋅ ⋅red
VERC VERD , [](),⋅ ⋅red

VALC VALD , and [](),⋅ ⋅red
SENC SEND .

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

82

5. DISCUSSION

This paper presents a discussion intended to highlight the differences between validation

and calibration, especially from the view of a rigorous understanding of the (potential)

credibility of complex computational science and engineering codes used for particular

applications. In particular, we articulated some concepts for formal assessment of credibility

of DOE ASC program CS&E codes for use in high-consequence decision applications.

This is a difficult task, and we have presented only a tentative view of the associated

problems, certainly not solutions. Our greatest effort over the past few years has been in

verification and validation. This article can be viewed as a summary distillation of some of

the insights we have gained regarding calibration as a result of this work. In our own thinking,

the prominence and difficulty of verification has also enlarged as we have more deeply

engaged validation questions. Verification remains a key problem for validation as well as the

broad problem of calibration we sketched in Section 3.

Konikov and Bredehoeft [8] argue that validation is impossible. While made specifically

in the context of groundwater flow models, their remarks can be interpreted more generally.

Two foci of these authors’ argument are problems associated with (1) identification of

validation as a goal and (2) a suitable definition of scientific prediction. While we agree that

there are great practical difficulties associated with these two issues, we disagree with the

substance of the belief in the impossibility of validation.

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

83

We believe that verification and validation are specialized processes that respond to the

need to use computational simulation in finite periods of time for key public policy decisions,

not simply to reflect the growth of scientific and analytical understanding of complex physical

models. Oberkampf, Trucano and Hirsch [6,10] have emphasized this view of V&V. These

papers effectively argue at length that V&V is a process of evidence accumulation similar to

the formation of legal cases. V&V accumulates evidence to support the case for using codes

for specified applications in a manner similar to the way evidence is accumulated in a civil or

criminal trial. The processes of high-risk decision making using complex scientific codes as

decision-support tools can comfortably work within such a V&V framework, as evidenced by

nuclear power licensing methodology requiring reactor safety analyses and predictions [84]

and WIPP licensing methodology requiring radionuclide transport analyses and predictions

[85]. We have attempted to provide a formalization of the logical nature of this process of

evidence accumulation and quantification in this paper, centered on the definition and

application of benchmarks.

The drive for prediction is imposed upon the authors of this paper externally through

mandates associated with the DOE ASC program. In particular, it is stated in DOE (2004) that

the strategic goal is “Predictive simulations and modeling tools, supported by necessary

computing resources, to sustain long-term stewardship of the stockpile.” The expectation of

predictive modeling is clear. Whether this is a rational goal is not a point of discussion for this

paper. Rather, we must consider what logical elements are both necessary and sufficient to

achieve this goal in a way that is useful and understood. Wilson and Boyack [86] and others

[36,24,37,38,39] argue, and we strongly agree, that the proper context for making high-

integrity predictions from computational models has the form

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

84

Best Estimate Plus Uncertainty (BE+U)

Our confidence in the quality of BE (Best Estimate) is the accumulation of V&V evidence

that we have discussed in this paper. For example, identifying a series of validation

benchmarks that are closely related to an intended application of a code and performing a

series of calculations with that code that agree well with the benchmarks (in terms of the

comparisons of Section 2) lead to increased credibility of the code for the application. This

provides a foundation for presenting a computed result as a BE, as well as for understanding

the uncertainty in that result. Quantification of U (Uncertainty), which has not been the focus

of this paper but is clearly related to the processes and results of V&V, is driven by

identification, characterization and quantification of the uncertainties that appear in the code

predictions of BE. The thrust of (BE+U) is that prediction is probabilistic precisely because of

our inability to complete V&V in some definitive sense and because of uncertainties intrinsic

to complex modeling activities. (BE+U) recognizes the possibilities of inaccuracy and lack of

scientific fidelity in complex simulations that can never be eliminated and that are, therefore,

critical for proper communication as part of the process of performing computational studies.

The greater the risk of the decision processes that use the modeling results, then the more

important it is to work to this paradigm. This information may be very difficult to assemble

and communicate. The targeted decision maker may not wish to acknowledge this kind of

information, for various reasons. But the overarching goal of prediction as (BE+U) remains

prominent.

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

85

Our interest in the coordination of validation and formal accounting of model uncertainty

in calibration methods is rooted in our desire to report (BE+U) in computational studies.

Much remains to be done. Konikov and Bredehoeft go so far as to argue that focus on V&V is

destructive, that better words if not operating principles for the computational community are

“model calibration” and “benchmarking.” One of the suggestions we have made in this paper

is that these concepts have a formalization that is compatible with V&V as well as dependent

on it. In our view, it is more important to focus on V&V, not so much for the reason of

glorifying how much we may know about our codes but for the purpose of critical, objective

scrutiny of how far they may be from “correct.” At the end of the day, this is the element that

governs their use and impact on society.

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

86

REFERENCES

[1] United States Department of Energy. Advanced Simulation and Computing Program Plan.

Sandia National Laboratories Fiscal Year 2005; Report SAND 2004-4607PP. Issued by

Sandia National Laboratories for NNSA’s Office of Advanced Simulation & Computing, NA-

114, 2004.

[2] United States Department of Defense. DoD Directive No. 5000.59: Modeling and Simulation

(M&S) Management, Defense Modeling and Simulation Office, Office of the Director of

Defense Research and Engineering, 1994.

[3] United States Department of Defense. Verification, Validation, and Accreditation (VV&A)

Recommended Practices Guide, Defense Modeling and Simulation Office, Office of the

Director of Defense Research and Engineering, 1996.

[4] AIAA. Guide for the Verification and Validation of Computational Fluid Dynamics

Simulations. American Institute of Aeronautics and Astronautics, AIAA-G-077-1998, Reston,

VA, 1998.

[5] Trucano, TG, Pilch, M. and Oberkampf, WL. On the Role of Code Comparisons in

Verification and Validation. Sandia National Laboratories 2003; Report SAND2003-2752.

(Available at http://www.sandia.gov)

[6] Oberkampf, WL, Trucano, TG. Verification and validation in computational fluid dynamics.

Progress in Aerospace Sciences 2002; 38:209-272.

[7] Roache PJ. Verification and validation in computational science and engineering.

Albuquerque, NM: Hermosa Publishers, 1998.

[8] Konikov, LF, Bredehoeft, JD. Groundwater models cannot be validated. Advances in Water

Resources 1992; 15:75-83.

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

87

[9] Oreskes, N, Shrader-Frechette, K, Belitz, K. Verification, validation, and confirmation of

numerical models in the earth sciences. Science 1994; 263:641-646.

[10] Oberkampf, WL, Trucano, TG, Hirsch, C. Verification, Validation, and Predictive Capability

in Computational Engineering and Physics. Applied Mechanics Reviews, 2004; 57(5): 345-

384.

[11] Beizer B. Software testing techniques. New York: Van Nostrand Reinhold, 1990.

[12] Kaner C, Falk J, Nguyen HQ. Testing computer software, 2nd ed. New York: Wiley, 1999.

[13] Trucano, TG, Pilch, M. and Oberkampf, WL. General Concepts for Experimental Validation

of ASCI Code Applications. Sandia National Laboratories 2002; Report SAND2002-0341.

(Available at http://www.sandia.gov)

[14] Chen, MI, Trucano, TG. ALEGRA validation studies for regular, Mach, and double Mach

shock reflection in gas dynamics. Sandia National Laboratories 2002; Report SAND2002-

2240. (Available at http://www.sandia.gov)

[15] Sandoval, DL. CAVEAT calculations of shock interactions. Los Alamos National Laboratory

1987; Report LA-11001-MS.

[16] Trucano, TG, et al. Description of the Sandia Validation Metrics Project, Sandia National

Laboratories 2001; Report SAND2001-1339. (Available at http://www.sandia.gov)

[17] Stewart, TR, Lusk, CM. Seven Components of Judgmental Forecasting Skill: Implications for

Research and the Improvement of Forecasts. Journal of Forecasting 1994; 13: 579-599.

[18] Knupp, P, Salari, K. Verification of Computer Codes in Computational Science and

Engineering. Boca Raton: Chapman and Hall/CRC, 2003.

[19] Parry, GW, Winter, PW. Characterization and Evaluation of Uncertainty in Probabilistic Risk

Analysis. Nuclear Safety 1981; 22(1):28-42.

[20] Paté-Cornell, ME. Probability and Uncertainty in Nuclear Safety Decisions. Nuclear

Engineering and Design 1986; 93(2-3):319-327.

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

88

[21] Parry, GW. On the Meaning of Probability in Probabilistic Safety Assessment. Reliability

Engineering and System Safety 1988; 23(4):309-314.

[22] Apostolakis, GE. Uncertainty in Probabilistic Risk Assessment. Nuclear Engineering and

Design 1989; 115:173-179.

[23] Apostolakis, GE. The Concept of Probability in Safety Assessments of Technological

Systems. Science 1990; 250(4986):1359-1364.

[24] Helton, JC. Treatment of Uncertainty in Performance Assessments of Complex Systems. Risk

Analysis 1994; 14(4):483-511.

[25] Hoffman, FO and Hammonds, JS. Propagation of Uncertainty in Risk Assessments: The Need

to Distinguish Between Uncertainty Due to Lack of Knowledge and Uncertainty Due to

Variability. Risk Analysis 1994; 14(5):707-712.

[26] Helton, JC and Burmaster, DE. Guest Editorial: Treatment of Aleatory and Epistemic

Uncertainty in Performance Assessments for Complex Systems. Reliability Engineering and

System Safety 1996; 54(2-3):91-94.

[27] Paté-Cornell, ME. Uncertainties in Risk Analysis: Six Levels of Treatment. Reliability

Engineering and System Safety 1996; 54(2-3):95-111.

[28] Helton, JC. Uncertainty and Sensitivity Analysis in the Presence of Stochastic and Subjective

Uncertainty. Journal of Statistical Computation and Simulation 1997; 57(1-4):3-76.

[29] Helton, JC, Oberkampf, WL. Eds. Special Issue: Alternative Representations of Epistemic

Uncertainty. Reliability Engineering and System Safety 2004; 85(1-3):1-376.

[30] Oberkampf, WL, DeLand, SM, Rutherford, BM, Diegert, KV, Alvin, KF. Error and

uncertainty in modeling and simulation. Reliability Engineering & System Safety, 2002;

75(3): 333-57.

[31] Hills, RG, Trucano, TG. Statistical Validation of Engineering and Scientific Models:

Background. Sandia National Laboratories 1999; Report SAND99-1256. (Available at

http://www.sandia.gov)

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

89

[32] Zhang, R, Mahadevan, S. Bayesian Methodology for Reliability Model Acceptance.

Reliability Engineering and System Safety 2003; 80(1): 95-103.

[33] Mahadevan, S, Rebba, R. Validation of Reliability Computational Models Using Bayesian

Networks. Reliability Engineering and System Safety 2005; 87: 223-232.

[34] Singpurwalla, ND, Wilson, SP. Statistical Methods in Software Engineering. New York:

Springer, 1999.

[35] Campbell, K. A Brief Survey Of Statistical Model Calibration Ideas. Los Alamos Technical

Report LA-UR-02-3157, 2002a.

[36] Nichols, AL, Zeckhauser, RJ. The Perils of Prudence: How Conservative Risk Assessments

Distort Regulation. Regulatory Toxicology and Pharmacology 1988; 8:61-75.

[37] Sielken, Jr., RL, Bretzlaff, RS, Stevenson, DE. Challenges to Default Assumptions Stimulate

Comprehensive Realism as a New Tier in Quantitative Cancer Risk Assessment. Regulatory

Toxicology and Pharmacology 1995; 21:270-280.

[38] Caruso, MA, et al. An Approach for using risk assessment in risk-informed decisions on plant-

specific changes to the licensing basis. Reliability Engineering and System Safety 1999; 63:

231-242.

[39] Paté-Cornell, ME. Risk and Uncertainty Analysis in Government Safety Decisions. Risk

Analysis 2002; 22:633-646.

[40] Oxford English Dictionary, Concise 11th Edition, Oxford University Press, 2004.

[41] Red-Horse, J, et al. Nondeterministic Analysis of Mechanical Systems. Sandia National

Laboratories 2000; Report SAND2000-0890. (Available at http://www.sandia.gov)

[42] Earman, J. Bayes or Bust? Cambridge Massachusetts: MIT Press, 1992.

[43] Woodward, P, Colella, P. The numerical simulation of two-dimensional fluid flow with strong

shocks. Journal of Computational Physics 1984; 54(1): 115-173.

[44] NIST website on statistical process models, regression, parameter estimation, etc.:

http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

90

[45] Neter, J, Wasserman, W, and Kuter, MH. Applied Linear Statistical Models: Regression,

Analysis of Variance, and Experimental Designs. Homewood IL: Irwin, 1985.

[46] Bates, D. M. and D. G. Watts. Nonlinear Regression Analysis and its Applications. New

York: John Wiley & Sons, 1988.

[47] Kennedy, MC and A O’Hagan. Bayesian Calibration of Computer Models. Journal of the

Royal Statistical Society, 2001; 63: 425-464.

[48] Higdon, D, Williams, B, Moore, L, McKay, M, Keller-McNulty, S. Uncertainty Quantification

for Combining Experimental Data and Computer Simulations. Los Alamos Technical Report

2004; LA-UR 04-6562.

[49] Bayarri, M.J., Berger, J.O., Higdon, D., Kennedy, M.C., Kotas, R.P, Sacks, J., Cafeo, J.A.,

Cavendish, J., Lin, C.H., and J. Tu. “A Framework for Validation of Computer Models.”

V&V Foundations Conference, 2002.

[50] Cressie, NAC. Statistics for Spatial Data. New York: John Wiley & Sons, 1993.

[51] Williams, C. Gaussian Processes chapter in The Handbook of Brain Theory and Neural

Networks, M. Arbib, ed. Cambridge, MA: MIT Press, 2002.

[52] Gelman, AB, Carlin, JS, Stern, HS, and DB Rubin. Bayesian Data Analysis, Boca Raton:

Chapman and Hall/CRC, 1995.

[53] Press, SJ. Subjective and Objective Bayesian Statistics: Principles, Models, and Applications,

2nd Edition. New York: John Wiley & Sons, 2003.

[54] Gilks, WR, S Richardson, and DJ Spiegelhalter. Markov Chain Monte Carlo in Practice.

Boca Raton: Chapman and Hall/CRC, 1996.

[55] Gamerman, D. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference.

Boca Raton: Chapman and Hall/CRC, 1997.

[56] Swiler, LP, Trucano, TG. Treatment of model uncertainty under calibration. Proceedings of

the 9th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability,

2004.

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

91

[57] Campbell, K. Exploring Bayesian Model Calibration: A Guide to Intuition. Los Alamos

Technical Report LA-UR-02-7175, 2002b.

[58] Cox, DD, J-S. Park, and CE Singer. A statistical method for tuning a computer code to a data

base. Computational Statistics and Data Analysis 2001; 37: 77-92.

[59] Wolpert, DH. The status of supervised learning science circa 1994: The search for a

consensus. The Mathematics of Generalization, ed. D. H. Wolpert, Reading: Addison-Wesley,

1995.

[60] Cucker, F, Smale, S. On the mathematical foundations of learning. Bulletin of the American

Mathematical Society 2001; 39:1-49.

[61] Poggio, T, Smale, S. The mathematics of learning: Dealing with data. Notices of the American

Mathematical Society 2003; May: 537-544.

[62] Igusa, T, Trucano, TG. Role of computational learning theory in calibration and prediction.

Proceedings of the 9th ASCE Specialty Conference on Probabilistic Mechanics and Structural

Reliability, 2004.

[63] Hastie, T, Tibshirani, R, Friedman, J. The Elements of Statistical Learning. New York:

Springer, 2001.

[64] Cooke, RM. Experts in Uncertainty: Opinion and Subjective Probability in Science. New

York: Oxford University Press, 1991.

[65] Meyer, MA, Booker, JM. Eliciting and Analyzing Expert Judgment: A Practical Guide. New

York: Academic Press, 1991.

[66] Ayyub, BM. Elicitation of Expert Opinions for Uncertainty and Risks. Boca Raton: CRC

Press, 2001.

[67] Johnson, RA, Wichern, DW. Applied Multivariate Statistical Analysis. Prentice-Hall, 1998.

[68] Hardle, W. Applied Nonparametric Regression. New York: Cambridge University Press,

1990.

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

92

[69] Beck, MB. Water Quality Modeling: A Review of the Analysis of Uncertainty. Water

Resources Research 1987; 23: 1393-1442.

[70] Box, GEP, Draper, NR. Empirical Model-Building and Response Surfaces. New York: John

Wiley & Sons, 1987.

[71] Iman, RL. Uncertainty and Sensitivity Analysis for Computer Modeling Applications. In T. A.

Cruse, editor. Reliability Technology – 1992, Winter Annual Meeting of the American Society

of Mechanical Engineers, Anaheim, California, November 8-13, 1992. New York: American

Society of Mechanical Engineers, Aerospace Division, 1992; (28): 153-168.

[72] Helton, JC. Uncertainty and Sensitivity Analysis Techniques for Use in Performance Safety

Assesment for Radioactive Waste Disposal. Reliability Engineering and System Safety 1993;

42(2-3):327-367.

[73] Blower, SM and Dowlatabadi, H. Sensitivity and Uncertainty Analysis of Complex Models of

Disease Transmission: an HIV Model, as an Example. International Statistical Review 1994;

62(2):229-243.

[74] Hamby, DM. A Review of Techniques for Parameter Sensitivity Analysis of Environmental

Models. Environmental Monitoring and Assessment 1994; 32(2):135-154.

[75] Saltelli, A, Scott, M. Guest Editorial: The role of sensitivity analysis in the corroboration of

models and its link to model structural and parametric uncertainty. Reliability Engineering and

System Safety 1997; 57:1-4.

[76] Kleijnen, JPC And Helton, JC. Statistical Analyses of Scatterplots to Identify Important

Factors in Large-Scale Simulations, 1: Review and Comparisons of Techniques. Reliability

Engineering and System Safety 1999; 65(2):147-185.

[77] Saltelli, A, Chan, K, Scott, EM. Sensitivity Analysis. New York: John Wiley & Sons, 2000.

[78] Frey, HC and Patil, SR. Identification and Review of Sensitivity Analysis Methods. Risk

Analysis 2002; 22(3):553-578.

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

93

[79] Helton, JC and Davis, FJ. Illustration of Sampling-Based Methods for Uncertainty and

Uncertainty Analysis. Risk Analysis 2002; 22(3):591-622.

[80] Ionescu-Bujor, M and Cacuci, DG. A Comparative Review of Sensitivity and Uncertainty

Analysis of Large-Scale Systems – I: Deterministic Methods. Nuclear Science and

Engineering 2004; 147(3):189-203.

[81] Cacuci, DG and Ionescu-Bujor, M. A Comparative Review of Sensitivity and Uncertainty

Analysis of Large-Scale Systems – II: Statistical Methods. Nuclear Science and Engineering

2004; 147(3):204-217.

[82] Pilch, M, et al. Guidelines for Sandia ASCI Verification and Validation Plans – Content and

Format: Version 2.0. Sandia National Laboratories 2001; Report SAND2000-3101. (Available

at http://www.sandia.gov)

[83] Boyack, BE. Quantifying reactor safety margins Part 1: An overview of the code scaling,

applicability, and uncertainty evaluation methodology. Nuclear Engineering and Design 1990;

119: 1-15.

[84] Breeding, RJ, Helton, JC, Gorham, ED, Harper, FT. Summary description of the methods used

in the probabilistic risk assessments for NUREG-1150. Nuclear Engineering and Design 1992;

vol.135(1): 1-27.

[85] Helton, JC, Anderson, DR, Basabilvazo, G, Jow, H-N, Marietta, MG. Conceptual Structure of

the 1996 Performance Assessment for the Waste Isolation Pilot Plant. Reliability Engineering

and System Safety 2000; 69(1-3): 151-165.

[86] Wilson, GE, Boyack, BE. The role of the PIRT process in experiments, code development and

code applications associated with reactor safety analysis. Nuclear Engineering and Design

1998; 186: 23-37.

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

94

ACKNOWLEDGEMENTS

The work of the Sandia authors was partially funded by the Applied Mathematical

Sciences program, U.S. Department of Energy, Office of Energy Research and performed at

Sandia, a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin

Company, for the U.S. DOE under contract number DE-AC-94AL85000. The work of Igusa

was partially funded by the National Science Foundation at the Johns Hopkins University

under Grant Number DMI-0087032. The authors would like to thank and anonymous referee

and Jon Helton for critically reviewing a preliminary version of this manuscript. We

particularly thank the latter reviewer for providing us with a large number of additional

references for this paper.

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

95

Figure 1. Qualitative view of a calculation of double Mach reflection as presented in Chen

and Trucano (2002).

Refl
ec

ted
 Pro

pag
ati

on

Incident
Shock
Wave
Direction

Reflective Wedge

Double Mach
Reflection

θ

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

96

Figure 2. Example of a convergence study performed in Chen and Trucano (2002).

Double Mach Reflection

0.0 1.50.5 1.0

Pr
es

su
re

Distance Along Wedge

Fine Mesh
Medium Mesh
Coarse Mesh

30

20

10

0

40

50

Double Mach Reflection

0.0 1.50.5 1.0

Pr
es

su
re

Distance Along Wedge

Fine Mesh
Medium Mesh
Coarse Mesh

30

20

10

0

40

50

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

97

Figure 3. Example of a comparison of calculated and experimental data in Chen and Trucano

(2002).

1

2

3

5

6

4

90° - θ

∆
p r

/ ∆
p i

nc

35 40 45 5030

Experiment + Error Bar

ALEGRA Calculation

RR DMR

45
1

2

3

5

6

4

90° - θ

∆
p r

/ ∆
p i

nc

35 40 45 5030

Experiment + Error Bar

ALEGRA Calculation

RR DMR

45

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

98

Figure 4. Confidence versus prediction intervals in linear regression..

Score1

Sc
or

e2

98765432

3.5

3.0

2.5

2.0

1.5

1.0

S 0.127419
R-Sq 95.7%
R-Sq(adj) 95.1%

Regression
95% CI
95% PI

Score2 = 1.118 + 0.2177 Score1

April 26, 2005 SAND2004-6083J

REVISED MANUSCRIPT

99

Figure 5. Illustration of an apparent interpolation point for two-components systems with

scalar parameters.

p(1)

p(2)

training data for
component 2

training data for
component 1

apparent
interpolation

